Skip to main content
Top
Published in: European Radiology 12/2009

01-12-2009 | Computed Tomography

Effective dose evaluation of multidetector CT examinations: influence of the ICRP recommendation in 2007

Authors: Kosuke Matsubara, Kichiro Koshida, Masayuki Suzuki, Tetsunori Shimono, Tomoyuki Yamamoto, Osamu Matsui

Published in: European Radiology | Issue 12/2009

Login to get access

Abstract

We compared effective doses for recent computed tomography (CT) examinations calculated based on International Commission on Radiological Protection publication number 103 (ICRP 103) with those calculated based on ICRP publication number 60 (ICRP 60), and considered the usefulness of the effective dose in CT dose evaluation. After placing radiophotoluminescence glass dosimeters (RPLDs) inside or outside an anthropomorphic phantom, we examined from the chest to the pelvis, cardiac, and cranial regions of the phantom. The absorbed dose was calculated by multiplying calibrated dose values of RPLD by the mass energy coefficient ratio. The effective dose was calculated as the sum total of the value for each tissue, which was multiplied by the equivalent dose according to the tissue weighting factor recommended in ICRP 103 and ICRP 60. Calculated effective doses based on ICRP 103 were different by –11% to +82% compared with those based on ICRP 60. The values of absorbed doses for selective tissues were relatively higher than the values for the effective dose. The effective dose represents only a mean dose value for an average human. Therefore, assessing the absolute dose of particular individuals in CT examinations based exclusively on the effective dose is not recommended.
Literature
1.
go back to reference Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32:2536–2547CrossRefPubMed Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32:2536–2547CrossRefPubMed
2.
go back to reference Arthurs OJ, Yates SJ, Set PA, Gibbons DA, Dixon AK (2009) Evaluation of image quality and radiation dose in adolescent thoracic imaging: 64-slice is preferable to 16-slice multislice CT. Br J Radiol 82:157–161CrossRefPubMed Arthurs OJ, Yates SJ, Set PA, Gibbons DA, Dixon AK (2009) Evaluation of image quality and radiation dose in adolescent thoracic imaging: 64-slice is preferable to 16-slice multislice CT. Br J Radiol 82:157–161CrossRefPubMed
3.
go back to reference Wang YN, Jin ZY, Kong LY, Zhang ZH, Song L, Zhang SY, Zhang LR, Lin SB, Wang Y, Zhao WM (2006) [Comparison of coronary angiography between 64-slice and 16-slice spiral CT]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 28:26–31PubMed Wang YN, Jin ZY, Kong LY, Zhang ZH, Song L, Zhang SY, Zhang LR, Lin SB, Wang Y, Zhao WM (2006) [Comparison of coronary angiography between 64-slice and 16-slice spiral CT]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 28:26–31PubMed
4.
go back to reference Wolf F, Feuchtner GM, Homolka P, Langenberger H, Stadler A, Bader TR, Weber M, Lammer J, Loewe C (2007) In vitro imaging of coronary artery stents: Are there differences between 16- and 64-slice CT scanners? Eur J Radiol 68:465–470CrossRefPubMed Wolf F, Feuchtner GM, Homolka P, Langenberger H, Stadler A, Bader TR, Weber M, Lammer J, Loewe C (2007) In vitro imaging of coronary artery stents: Are there differences between 16- and 64-slice CT scanners? Eur J Radiol 68:465–470CrossRefPubMed
5.
go back to reference Ertl-Wagner B, Eftimov L, Blume J, Bruening R, Becker C, Cormack J, Brueckmann H, Reiser M (2008) Cranial CT with 64-, 16-, 4- and single-slice CT systems—comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols. Eur Radiol 18:1720–1726CrossRefPubMed Ertl-Wagner B, Eftimov L, Blume J, Bruening R, Becker C, Cormack J, Brueckmann H, Reiser M (2008) Cranial CT with 64-, 16-, 4- and single-slice CT systems—comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols. Eur Radiol 18:1720–1726CrossRefPubMed
6.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284CrossRefPubMed Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284CrossRefPubMed
7.
go back to reference Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323CrossRefPubMed Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323CrossRefPubMed
8.
go back to reference Rampado O, Marchisio F, Izzo A, Garelli E, Bianchi CC, Gandini G, Ropolo R (2009) Effective dose and image quality evaluations of an automatic CT tube current modulation system with an anthropomorphic phantom. Eur J Radiol (in press). doi:10.1016/j.ejrad.2008.06.027 Rampado O, Marchisio F, Izzo A, Garelli E, Bianchi CC, Gandini G, Ropolo R (2009) Effective dose and image quality evaluations of an automatic CT tube current modulation system with an anthropomorphic phantom. Eur J Radiol (in press). doi:10.​1016/​j.​ejrad.​2008.​06.​027
9.
go back to reference Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, Genoni M, Flohr TG, Wildermuth S, Marincek B, Alkadhi H (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80CrossRefPubMed Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, Genoni M, Flohr TG, Wildermuth S, Marincek B, Alkadhi H (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80CrossRefPubMed
10.
go back to reference Hermann F, Martinoff S, Meyer T, Hadamitzky M, Jiang C, Hendrich E, Hausleiter J (2008) Reduction of radiation dose estimates in cardiac 64-Slice CT angiography in patients after coronary artery bypass graft surgery. Invest Radiol 43:253–260CrossRefPubMed Hermann F, Martinoff S, Meyer T, Hadamitzky M, Jiang C, Hendrich E, Hausleiter J (2008) Reduction of radiation dose estimates in cardiac 64-Slice CT angiography in patients after coronary artery bypass graft surgery. Invest Radiol 43:253–260CrossRefPubMed
11.
go back to reference International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication no. 103, Annals of ICRP 37, Pergamon, Oxford, pp 1–332 International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication no. 103, Annals of ICRP 37, Pergamon, Oxford, pp 1–332
12.
go back to reference International Commission on Radiological Protection (1991) 1990 recommendations of the International Commission on Radiological Protection. ICRP publication no. 60, Annals of ICRP 21, Pergamon, Oxford, pp 1–201 International Commission on Radiological Protection (1991) 1990 recommendations of the International Commission on Radiological Protection. ICRP publication no. 60, Annals of ICRP 21, Pergamon, Oxford, pp 1–201
13.
go back to reference International Commission on Radiation Units & Measurements (1989) Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU report no.44. ICRU, Bethesda International Commission on Radiation Units & Measurements (1989) Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU report no.44. ICRU, Bethesda
14.
go back to reference International Commission on Radiation Units & Measurements (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU report no.46, ICRU, Bethesda International Commission on Radiation Units & Measurements (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU report no.46, ICRU, Bethesda
15.
go back to reference Lund CC, Browder NC (1944) The estimation of areas of burns. Surg Gynaecol Obstet 79:352–358 Lund CC, Browder NC (1944) The estimation of areas of burns. Surg Gynaecol Obstet 79:352–358
16.
go back to reference Jones DG, Shrimpton PC (1993) Normalized organ doses for X-ray computed tomography calculated using Monte Carlo techniques. National Radiological Protection Board SR-250, NRPB, Chilton Jones DG, Shrimpton PC (1993) Normalized organ doses for X-ray computed tomography calculated using Monte Carlo techniques. National Radiological Protection Board SR-250, NRPB, Chilton
17.
go back to reference International Commission on Radiological Protection (2007) Managing patient dose in multi-detector computed tomography (MDCT). ICRP publication no.102, Annals of ICRP 37. Pergamon, Oxford, pp 1–80 International Commission on Radiological Protection (2007) Managing patient dose in multi-detector computed tomography (MDCT). ICRP publication no.102, Annals of ICRP 37. Pergamon, Oxford, pp 1–80
18.
go back to reference Catalano C, Francone M, Ascarelli A, Mangia M, Iacucci I, Passariello R (2007) Optimizing radiation dose and image quality. Eur Radiol 17:F26–F32CrossRefPubMed Catalano C, Francone M, Ascarelli A, Mangia M, Iacucci I, Passariello R (2007) Optimizing radiation dose and image quality. Eur Radiol 17:F26–F32CrossRefPubMed
19.
go back to reference Asahi Techno Glass (2000) RPL glass dosemeter environmental monitoring system: basic characteristic data. Chiyoda Technol, Tokyo Asahi Techno Glass (2000) RPL glass dosemeter environmental monitoring system: basic characteristic data. Chiyoda Technol, Tokyo
20.
go back to reference Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB (2006) Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 35:219–226CrossRefPubMed Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB (2006) Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 35:219–226CrossRefPubMed
Metadata
Title
Effective dose evaluation of multidetector CT examinations: influence of the ICRP recommendation in 2007
Authors
Kosuke Matsubara
Kichiro Koshida
Masayuki Suzuki
Tetsunori Shimono
Tomoyuki Yamamoto
Osamu Matsui
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
European Radiology / Issue 12/2009
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-009-1497-0

Other articles of this Issue 12/2009

European Radiology 12/2009 Go to the issue