Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2013

Open Access 01-12-2013 | Research

Effect of thong style flip-flops on children’s barefoot walking and jogging kinematics

Authors: Angus Chard, Andrew Greene, Adrienne Hunt, Benedicte Vanwanseele, Richard Smith

Published in: Journal of Foot and Ankle Research | Issue 1/2013

Login to get access

Abstract

Background

Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children’s barefoot three dimensional foot kinematics during walking and jogging.

Methods

Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion.

Results

Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001).

Conclusions

Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought.
Appendix
Available only for authorised users
Literature
1.
go back to reference Penkala S: PhD thesis. Footwear choices for children: knowledge, application and relationships to health outcomes. 2009, Australia: University of Sydney, Faculty of Health Sciences Penkala S: PhD thesis. Footwear choices for children: knowledge, application and relationships to health outcomes. 2009, Australia: University of Sydney, Faculty of Health Sciences
2.
go back to reference Wegener C, Hunt A, Vanwanseele B, Burns J, Smith R: Effect of children’s shoes on gait: a systematic review and meta-analysis. J Foot Ankle Res. 2011, 4: 3-10.1186/1757-1146-4-3.CrossRefPubMedPubMedCentral Wegener C, Hunt A, Vanwanseele B, Burns J, Smith R: Effect of children’s shoes on gait: a systematic review and meta-analysis. J Foot Ankle Res. 2011, 4: 3-10.1186/1757-1146-4-3.CrossRefPubMedPubMedCentral
3.
go back to reference Staheli LT: Shoes for children: a review. Pediatrics. 1991, 88: 371-375.PubMed Staheli LT: Shoes for children: a review. Pediatrics. 1991, 88: 371-375.PubMed
4.
go back to reference Walther M, Herold D, Sinderhauf A, Morrison R: Children sport shoes. A systematic review of current literature. Foot Ankle Surg. 2008, 14: 180-189. 10.1016/j.fas.2008.04.001.CrossRefPubMed Walther M, Herold D, Sinderhauf A, Morrison R: Children sport shoes. A systematic review of current literature. Foot Ankle Surg. 2008, 14: 180-189. 10.1016/j.fas.2008.04.001.CrossRefPubMed
7.
go back to reference Shroyer J, Welimar W: Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers. J Am Podiatr Med Assoc. 2010, 100: 251-256.CrossRefPubMed Shroyer J, Welimar W: Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers. J Am Podiatr Med Assoc. 2010, 100: 251-256.CrossRefPubMed
8.
go back to reference Carl TJ, Barrett SL: Computerized analysis of plantar pressure variation in flip-flops, athletic shoes, and bare feet. J Am Podiatr Med Assoc. 2008, 98: 374-378.CrossRefPubMed Carl TJ, Barrett SL: Computerized analysis of plantar pressure variation in flip-flops, athletic shoes, and bare feet. J Am Podiatr Med Assoc. 2008, 98: 374-378.CrossRefPubMed
9.
go back to reference Crawford F, Thomson C: Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003, Issue 3 Art. No: CD000416-10.1002/14651858.CD000416. Crawford F, Thomson C: Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003, Issue 3 Art. No: CD000416-10.1002/14651858.CD000416.
10.
go back to reference Wearing SC, Smeathers JE, Yates B, Sullivan PM, Urry SR, Dubois P: Sagittal movement of the medial longitudinal arch is unchanged in plantar fasciitis. Med Sci Sports Exerc. 2004, 36: 1761-1767. 10.1249/01.MSS.0000142297.10881.11.CrossRefPubMed Wearing SC, Smeathers JE, Yates B, Sullivan PM, Urry SR, Dubois P: Sagittal movement of the medial longitudinal arch is unchanged in plantar fasciitis. Med Sci Sports Exerc. 2004, 36: 1761-1767. 10.1249/01.MSS.0000142297.10881.11.CrossRefPubMed
11.
go back to reference Yates B, White S: The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am J Sports Med. 2004, 32: 772-780. 10.1177/0095399703258776.CrossRefPubMed Yates B, White S: The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am J Sports Med. 2004, 32: 772-780. 10.1177/0095399703258776.CrossRefPubMed
12.
go back to reference Willems T, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E: A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006, 23: 91-98. 10.1016/j.gaitpost.2004.12.004.CrossRefPubMed Willems T, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E: A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006, 23: 91-98. 10.1016/j.gaitpost.2004.12.004.CrossRefPubMed
13.
go back to reference Attwells R, Smith R: Shoe control of foot motion during walking and running. Proceedings of XVIII International Symposium on Biomechanics in Sport: 25–30 June 2000; Hong Kong. Edited by: Hong Y, Johns DP. 2000, China: The Chinese University of Hong Kong, 940-941. Attwells R, Smith R: Shoe control of foot motion during walking and running. Proceedings of XVIII International Symposium on Biomechanics in Sport: 25–30 June 2000; Hong Kong. Edited by: Hong Y, Johns DP. 2000, China: The Chinese University of Hong Kong, 940-941.
14.
go back to reference Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S: Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007, 25: 453-462. 10.1016/j.gaitpost.2006.05.017.CrossRefPubMed Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S: Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007, 25: 453-462. 10.1016/j.gaitpost.2006.05.017.CrossRefPubMed
15.
go back to reference van der Giessen LJ, Liekens D, Rutgers KJ, Hartman A, Mulder PG, Oranje AP: Validation of beighton score and prevalence of connective tissue signs in 773 Dutch children. J Rheumatol. 2001, 28: 2726-2730.PubMed van der Giessen LJ, Liekens D, Rutgers KJ, Hartman A, Mulder PG, Oranje AP: Validation of beighton score and prevalence of connective tissue signs in 773 Dutch children. J Rheumatol. 2001, 28: 2726-2730.PubMed
17.
go back to reference O’Meara DM, Smith RM, Hunt AE, Vanwanseele BM: In shoe motion of the child’s foot when walking. Proceedings of the 8th Footwear Biomechanics Symposium. 2007, Taipei, Taiwan: Footwear Biomechanics Group, 79-80. O’Meara DM, Smith RM, Hunt AE, Vanwanseele BM: In shoe motion of the child’s foot when walking. Proceedings of the 8th Footwear Biomechanics Symposium. 2007, Taipei, Taiwan: Footwear Biomechanics Group, 79-80.
18.
go back to reference Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - Part I: Ankle, hip, and spine. J Biomech. 2002, 35: 543-548. 10.1016/S0021-9290(01)00222-6.CrossRefPubMed Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - Part I: Ankle, hip, and spine. J Biomech. 2002, 35: 543-548. 10.1016/S0021-9290(01)00222-6.CrossRefPubMed
19.
go back to reference Hunt AE, Smith RM, Torode M, Keenan AM: Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin Biomech (Bristol, Avon). 2001, 16: 592-600. 10.1016/S0268-0033(01)00040-7.CrossRef Hunt AE, Smith RM, Torode M, Keenan AM: Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin Biomech (Bristol, Avon). 2001, 16: 592-600. 10.1016/S0268-0033(01)00040-7.CrossRef
20.
go back to reference Belli A, Kyröläinen H, Komi PV: Moment and power of lower limb joints in running. Int J Sports Med. 2002, 23: 136-141. 10.1055/s-2002-20136.CrossRefPubMed Belli A, Kyröläinen H, Komi PV: Moment and power of lower limb joints in running. Int J Sports Med. 2002, 23: 136-141. 10.1055/s-2002-20136.CrossRefPubMed
21.
go back to reference Oeffinger D, Brauch B, Cranfill S, Hisle C, Wynn C, Hicks R, Augsburger S: Comparison of gait with and without shoes in children. Gait Posture. 1999, 9: 95-100. 10.1016/S0966-6362(99)00005-3.CrossRefPubMed Oeffinger D, Brauch B, Cranfill S, Hisle C, Wynn C, Hicks R, Augsburger S: Comparison of gait with and without shoes in children. Gait Posture. 1999, 9: 95-100. 10.1016/S0966-6362(99)00005-3.CrossRefPubMed
22.
go back to reference Wolf S, Simon J, Patikas D, Schuster W, Armbrust P, Doederlein L: Foot motion in children shoes: A comparison of barefoot walking with shod walking in conventional and flexible shoes. Gait Posture. 2008, 27: 51-59. 10.1016/j.gaitpost.2007.01.005.CrossRefPubMed Wolf S, Simon J, Patikas D, Schuster W, Armbrust P, Doederlein L: Foot motion in children shoes: A comparison of barefoot walking with shod walking in conventional and flexible shoes. Gait Posture. 2008, 27: 51-59. 10.1016/j.gaitpost.2007.01.005.CrossRefPubMed
23.
go back to reference Sutherland DH: The development of mature gait. Gait Posture. 1997, 6: 163-170. 10.1016/S0966-6362(97)00029-5.CrossRef Sutherland DH: The development of mature gait. Gait Posture. 1997, 6: 163-170. 10.1016/S0966-6362(97)00029-5.CrossRef
24.
go back to reference Samson W, Dohin B, Desroches G, Chaverot J-L, Dumas R, Cheze L: Foot mechanics during the first six years of independent walking. J Biomech. 2011, 44: 1321-1327. 10.1016/j.jbiomech.2011.01.007.CrossRefPubMed Samson W, Dohin B, Desroches G, Chaverot J-L, Dumas R, Cheze L: Foot mechanics during the first six years of independent walking. J Biomech. 2011, 44: 1321-1327. 10.1016/j.jbiomech.2011.01.007.CrossRefPubMed
25.
go back to reference Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P, Lundberg A: Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture. 2008, 28: 93-100. 10.1016/j.gaitpost.2007.10.009.CrossRefPubMed Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P, Lundberg A: Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture. 2008, 28: 93-100. 10.1016/j.gaitpost.2007.10.009.CrossRefPubMed
26.
go back to reference Moseley L, Smith R, Hunt A, Gant R: Three-dimensional kinematics of the rearfoot during the stance phase of walking in normal young adult males. Clin Biomech (Bristol, Avon). 1996, 11: 39-45. 10.1016/0268-0033(95)00036-4.CrossRef Moseley L, Smith R, Hunt A, Gant R: Three-dimensional kinematics of the rearfoot during the stance phase of walking in normal young adult males. Clin Biomech (Bristol, Avon). 1996, 11: 39-45. 10.1016/0268-0033(95)00036-4.CrossRef
27.
go back to reference Hunt AE, Smith RM, Torode M: Extrinsic muscle activity, foot motion and ankle joint moments during the stance phase of walking. Foot Ankle Int. 2001, 22: 31-41.PubMed Hunt AE, Smith RM, Torode M: Extrinsic muscle activity, foot motion and ankle joint moments during the stance phase of walking. Foot Ankle Int. 2001, 22: 31-41.PubMed
28.
go back to reference Caravaggi P, Pataky T, Goulermas JY, Savage R, Crompton R: A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis. J Exp Biol. 2009, 212: 2491-2499. 10.1242/jeb.025767.CrossRefPubMed Caravaggi P, Pataky T, Goulermas JY, Savage R, Crompton R: A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis. J Exp Biol. 2009, 212: 2491-2499. 10.1242/jeb.025767.CrossRefPubMed
29.
go back to reference Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M: Intrinsic pedal musculature support of the medial longitudinal arch: An electromyography study. J Foot Ankle Surg. 2003, 42: 327-333. 10.1053/j.jfas.2003.10.003.CrossRefPubMed Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M: Intrinsic pedal musculature support of the medial longitudinal arch: An electromyography study. J Foot Ankle Surg. 2003, 42: 327-333. 10.1053/j.jfas.2003.10.003.CrossRefPubMed
30.
go back to reference Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J: Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kinesiol. 2008, 18: 420-425. 10.1016/j.jelekin.2006.11.004.CrossRefPubMed Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J: Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kinesiol. 2008, 18: 420-425. 10.1016/j.jelekin.2006.11.004.CrossRefPubMed
31.
go back to reference Begg R, Best R, Dell’Oro L, Taylor S: Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture. 2007, 25: 191-198. 10.1016/j.gaitpost.2006.03.008.CrossRefPubMed Begg R, Best R, Dell’Oro L, Taylor S: Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture. 2007, 25: 191-198. 10.1016/j.gaitpost.2006.03.008.CrossRefPubMed
Metadata
Title
Effect of thong style flip-flops on children’s barefoot walking and jogging kinematics
Authors
Angus Chard
Andrew Greene
Adrienne Hunt
Benedicte Vanwanseele
Richard Smith
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2013
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-6-8

Other articles of this Issue 1/2013

Journal of Foot and Ankle Research 1/2013 Go to the issue