Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2013

01-04-2013 | Original Research Article

Effect of test duration on the visual-evoked potential (VEP) and alpha-wave responses

Authors: Kevin T. Willeford, Kenneth J. Ciuffreda, Naveen K. Yadav

Published in: Documenta Ophthalmologica | Issue 2/2013

Login to get access

Abstract

Primary objective

The purpose of this study was to assess the effect of test duration on the visual-evoked potential (VEP) and related alpha power spectrum measures.

Design and methods

Two conditions (eyes-closed and eyes-open) were tested using four different durations: 10, 20, 45, and 60 s. The Diopsys™ NOVA-TR system was used to obtain the visual-evoked potential (VEP) and extracted alpha wave with its related power spectrum. Sixteen visually normal, young-adult subjects (aged 22–25 years) participated in the experiment. The stimulus for the eyes-open condition consisted of a black-and-white, alternating checkerboard pattern with a small central fixation target. All trials were performed during one session.

Results

Regarding the VEP parameters, only variability of the VEP amplitude changed significantly with test duration. Sentence should end with a period, not a colon. It decreased with increasing test duration, with the 45- and 60-s trials showing similarly low variability. Regarding the alpha-wave parameters, test duration did not have a significant effect on either the mean alpha power or its variability across trials.

Conclusions

The findings demonstrate that forty-five-second test durations are sufficient to minimize intra-session variability of the VEP amplitude and latency measurements, whereas 10-s test durations may be sufficient for accurate measurement of the alpha wave. Optimization of test duration allows for repeatable measures with less total test time. This is especially important for special clinical populations.
Literature
1.
go back to reference Schroeder CE, Tenke CE, Givre SJ, Arezzo JC, Vaughan HG (1991) Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vis Res 11:1143–1157CrossRef Schroeder CE, Tenke CE, Givre SJ, Arezzo JC, Vaughan HG (1991) Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vis Res 11:1143–1157CrossRef
2.
go back to reference Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visually evoked potential. Hum Brain Mapp 15:95–111CrossRef Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visually evoked potential. Hum Brain Mapp 15:95–111CrossRef
3.
go back to reference Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2009) ISCEV standard for clinical visual-evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRef Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2009) ISCEV standard for clinical visual-evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRef
4.
go back to reference Tello C, DeMoraes CGV, Prata TS, Derr P, Patel J, Siegfried J, Liebmann JM, Ritch R (2010) Repeatability of short-duration transient visual evoked potentials in normal subjects. Doc Ophthalmol 120:219–228PubMedCrossRef Tello C, DeMoraes CGV, Prata TS, Derr P, Patel J, Siegfried J, Liebmann JM, Ritch R (2010) Repeatability of short-duration transient visual evoked potentials in normal subjects. Doc Ophthalmol 120:219–228PubMedCrossRef
5.
go back to reference Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329PubMedCrossRef Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329PubMedCrossRef
6.
go back to reference Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Flynn ER, Wood CC (1996) Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 6:354–361PubMedCrossRef Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Flynn ER, Wood CC (1996) Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 6:354–361PubMedCrossRef
7.
go back to reference Ossenblok P, Spekreijse H (1991) The extrastriate generators of the EP to checkerboard onset: a source localization approach. Electroencephalogr Clin Neurophysiol 80:181–193PubMedCrossRef Ossenblok P, Spekreijse H (1991) The extrastriate generators of the EP to checkerboard onset: a source localization approach. Electroencephalogr Clin Neurophysiol 80:181–193PubMedCrossRef
8.
go back to reference Klistorner AI, Graham SL (2001) Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. Invest Ophthalmol Vis Sci 42:2145–2152PubMed Klistorner AI, Graham SL (2001) Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. Invest Ophthalmol Vis Sci 42:2145–2152PubMed
9.
go back to reference Mezer E, Bahir Y, Leibu R, Perlman I (2004) Effect of defocusing and of distracted attention upon recordings of the visual evoked potential. Doc Ophthalmol 109:229–238PubMedCrossRef Mezer E, Bahir Y, Leibu R, Perlman I (2004) Effect of defocusing and of distracted attention upon recordings of the visual evoked potential. Doc Ophthalmol 109:229–238PubMedCrossRef
10.
go back to reference Ciuffreda KJ (1999) Nearwork-induced transient myopia: basic and clinical aspects. Optom Vis Dev 30:5–20 Ciuffreda KJ (1999) Nearwork-induced transient myopia: basic and clinical aspects. Optom Vis Dev 30:5–20
11.
go back to reference Chase C, Tosha C, Borsting E, Ridder W (2009) Visual discomfort and objective measures of static accommodation. Optom Vis Sci 86:883–889PubMedCrossRef Chase C, Tosha C, Borsting E, Ridder W (2009) Visual discomfort and objective measures of static accommodation. Optom Vis Sci 86:883–889PubMedCrossRef
12.
go back to reference Tosha C, Borsting E, Ridder WH, Chase C (2009) Accommodation response and visual discomfort. Ophthalmic Physiol Opt 29:625–633PubMedCrossRef Tosha C, Borsting E, Ridder WH, Chase C (2009) Accommodation response and visual discomfort. Ophthalmic Physiol Opt 29:625–633PubMedCrossRef
13.
go back to reference Dumermuth G (1973) Numerical spectral analysis of the electroencephalogram. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, 5A. Elsevier, Amsterdam, pp 33–60 Dumermuth G (1973) Numerical spectral analysis of the electroencephalogram. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, 5A. Elsevier, Amsterdam, pp 33–60
14.
go back to reference Gasser T (1977) General characteristics of the EEG as a signal. In: Remond A (ed) EEG informatics. A didactic review of methods and applications of EEG data processing. Elsevier, Amsterdam, pp 37–55 Gasser T (1977) General characteristics of the EEG as a signal. In: Remond A (ed) EEG informatics. A didactic review of methods and applications of EEG data processing. Elsevier, Amsterdam, pp 37–55
15.
go back to reference Oken BS, Chiappa KH (1988) Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 69:191–198PubMedCrossRef Oken BS, Chiappa KH (1988) Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 69:191–198PubMedCrossRef
16.
go back to reference Matousek M, Petersen I (1973) Frequency analysis of the EEG in normal children and adolescents. In: Kellaway P, Petersen I (eds) Automation of clinical electroencephalography. Raven Press, New York, pp 75–102 Matousek M, Petersen I (1973) Frequency analysis of the EEG in normal children and adolescents. In: Kellaway P, Petersen I (eds) Automation of clinical electroencephalography. Raven Press, New York, pp 75–102
17.
go back to reference Burgess A, Gruzelier J (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol 86:219–223PubMedCrossRef Burgess A, Gruzelier J (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol 86:219–223PubMedCrossRef
18.
go back to reference Maltez J, Hyllienmark L, Nikulin VV, Brismar T (2004) Time course and variability of power in different frequency bands of EEG during resting conditions. Clin Neurophysiol 34:195–202CrossRef Maltez J, Hyllienmark L, Nikulin VV, Brismar T (2004) Time course and variability of power in different frequency bands of EEG during resting conditions. Clin Neurophysiol 34:195–202CrossRef
19.
go back to reference Lynch J, Paskewitz DA, Orne MT (1974) Inter-session stability of human alpha rhythm densities. Electroencephalogr Clin Neurophysiol 36:538–540PubMedCrossRef Lynch J, Paskewitz DA, Orne MT (1974) Inter-session stability of human alpha rhythm densities. Electroencephalogr Clin Neurophysiol 36:538–540PubMedCrossRef
20.
go back to reference Van Dis H, Corner M, Dapper R, Hanewald G, Kok H (1979) Individual differences in the human electroencephalogram during quiet wakefulness. Electroencephalogr Clin Neurophysiol 47:87–94PubMedCrossRef Van Dis H, Corner M, Dapper R, Hanewald G, Kok H (1979) Individual differences in the human electroencephalogram during quiet wakefulness. Electroencephalogr Clin Neurophysiol 47:87–94PubMedCrossRef
21.
go back to reference Mocks J, Gasser T (1984) How to select epochs of the EEG at rest for quantitative analysis. Electroencephalogr Clin Neurophysiol 58:89–92PubMedCrossRef Mocks J, Gasser T (1984) How to select epochs of the EEG at rest for quantitative analysis. Electroencephalogr Clin Neurophysiol 58:89–92PubMedCrossRef
22.
go back to reference Freed S, Fishman Hellerstein L (1997) Visual electrodiagnostic findings in mild traumatic brain injury. Brain Inj 11:25–36PubMedCrossRef Freed S, Fishman Hellerstein L (1997) Visual electrodiagnostic findings in mild traumatic brain injury. Brain Inj 11:25–36PubMedCrossRef
23.
go back to reference Soininen H, Partanen J, Laulumaa V, Helkala E-L, Laakso M, Riekkinen PJ (1989) Longitudinal EEG spectral analysis in early stage of Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 72:290–297PubMedCrossRef Soininen H, Partanen J, Laulumaa V, Helkala E-L, Laakso M, Riekkinen PJ (1989) Longitudinal EEG spectral analysis in early stage of Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 72:290–297PubMedCrossRef
24.
go back to reference Tineke G, Boehler CN, Kenemans JL, Woldorff MG (2011) Differential functional roles of slow-wave and oscillatory alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cereb Cortex 21:2204–2216CrossRef Tineke G, Boehler CN, Kenemans JL, Woldorff MG (2011) Differential functional roles of slow-wave and oscillatory alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cereb Cortex 21:2204–2216CrossRef
25.
go back to reference Fuller P (1978) Attention and the EEG alpha rhythm in learning disabled children. J Learn Disabil 11:303–312PubMedCrossRef Fuller P (1978) Attention and the EEG alpha rhythm in learning disabled children. J Learn Disabil 11:303–312PubMedCrossRef
26.
go back to reference Kelly SP, Gomez-Ramirez M, Foxe JJ (2009) The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur J Neurosci 30:2224–2234PubMedCrossRef Kelly SP, Gomez-Ramirez M, Foxe JJ (2009) The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur J Neurosci 30:2224–2234PubMedCrossRef
27.
go back to reference van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28:1816–1823PubMedCrossRef van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28:1816–1823PubMedCrossRef
28.
go back to reference Yadav NK, Ludlam DP, Ciuffreda KJ (2012) Effect of different stimulus configurations on the visual-evoked potential (VEP). Doc Ophthalmol 124:177–196PubMedCrossRef Yadav NK, Ludlam DP, Ciuffreda KJ (2012) Effect of different stimulus configurations on the visual-evoked potential (VEP). Doc Ophthalmol 124:177–196PubMedCrossRef
29.
go back to reference Ciuffreda KJ, Yadav NK, Ludlam DP (in press) Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI). Brain Inj PMID 22900490 Ciuffreda KJ, Yadav NK, Ludlam DP (in press) Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI). Brain Inj PMID 22900490
30.
go back to reference Benjamin WJ (2006) Borish’s clinical refraction, 2nd edn. Butterworth-Heinemann, St Louis Benjamin WJ (2006) Borish’s clinical refraction, 2nd edn. Butterworth-Heinemann, St Louis
32.
go back to reference Bradley JV (1958) Complete counterbalancing of immediate sequential effects in a Latin square design. J Amer Stat Assoc 53:525–528CrossRef Bradley JV (1958) Complete counterbalancing of immediate sequential effects in a Latin square design. J Amer Stat Assoc 53:525–528CrossRef
33.
go back to reference Gomarus HK, Wijers AA, Minderaa RB, Althaus M (2009) Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance? Clin Neurophysiol 120:73–79PubMedCrossRef Gomarus HK, Wijers AA, Minderaa RB, Althaus M (2009) Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance? Clin Neurophysiol 120:73–79PubMedCrossRef
35.
go back to reference Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res 29:169–195CrossRef Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res 29:169–195CrossRef
36.
go back to reference Salkind N (ed) (2010) Encyclopedia of research design. Sage, Thousand Oaks Salkind N (ed) (2010) Encyclopedia of research design. Sage, Thousand Oaks
37.
go back to reference Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis Res 23:775–785PubMedCrossRef Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis Res 23:775–785PubMedCrossRef
38.
go back to reference Swindale NV, Mitchell DE (1994) Comparison of receptive field properties of neurons in area 17 of normal and bilaterally amblyopic cats. Exp Brain Res 99:399–410PubMedCrossRef Swindale NV, Mitchell DE (1994) Comparison of receptive field properties of neurons in area 17 of normal and bilaterally amblyopic cats. Exp Brain Res 99:399–410PubMedCrossRef
39.
go back to reference Kara P, Reinagel P, Reid RC (2000) Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27:635–646PubMedCrossRef Kara P, Reinagel P, Reid RC (2000) Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27:635–646PubMedCrossRef
40.
go back to reference Gur M, Snodderly DM (2006) High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. Cereb Cortex 16:888–895PubMedCrossRef Gur M, Snodderly DM (2006) High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. Cereb Cortex 16:888–895PubMedCrossRef
41.
go back to reference Gur M, Beylin A, Snodderly DM (1997) Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci 17:2914–2920PubMed Gur M, Beylin A, Snodderly DM (1997) Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci 17:2914–2920PubMed
42.
go back to reference Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:203–292CrossRef Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:203–292CrossRef
43.
go back to reference Salinsky MC, Oken BS, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392PubMedCrossRef Salinsky MC, Oken BS, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392PubMedCrossRef
44.
go back to reference Gasser T, Bacher P, Steinberg H (1985) Test-retest reliability of spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 60:312–319PubMedCrossRef Gasser T, Bacher P, Steinberg H (1985) Test-retest reliability of spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 60:312–319PubMedCrossRef
45.
go back to reference Pollock VE, Schneider LS, Lyness SA (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26PubMedCrossRef Pollock VE, Schneider LS, Lyness SA (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26PubMedCrossRef
Metadata
Title
Effect of test duration on the visual-evoked potential (VEP) and alpha-wave responses
Authors
Kevin T. Willeford
Kenneth J. Ciuffreda
Naveen K. Yadav
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 2/2013
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-012-9363-9

Other articles of this Issue 2/2013

Documenta Ophthalmologica 2/2013 Go to the issue

EditorialNotes

Editor’s comment