Skip to main content
Top
Published in: Lasers in Medical Science 4/2016

01-05-2016 | Original Article

Effect of size, concentration, and type of spherical gold nanoparticles on heat evolution following laser irradiation using tissue-simulating phantoms

Authors: Hossam Zakaria, Wessameldin S. Abdelaziz, Tareq Youssef

Published in: Lasers in Medical Science | Issue 4/2016

Login to get access

Abstract

Photothermal therapy has recently gained a considerable attention particularly after the revolution of nanomaterials and nanotechnology. The aim of the present study is to assess the optimal photothermal response through investigating some effective parameters of spherical gold nanoparticles (AuNPs), e.g., type, size, and concentration, as a preclinical study for efficient photothermal treatment. Tissue-simulating phantoms based on agar and water media incorporated with two different types of AuNPs, spherical Au particles capped with citrate or spherical Au core–silica shell NPs, were built. Heat evolution for each NP type was recorded in the phantom matrix with different particle sizes at various concentrations following exposure to low laser power (irradiance 35 mW/cm2) and emitting at λ = 532 nm. Our results demonstrated that AuNPs capped with citrate recorded higher temperature elevations than those capped with silica shell. Particles with smaller sizes produced more heating effect than those having larger sizes. Also, higher temperatures were recorded at a critical concentration of NPs. Exponential decay constants based on theoretical calculations demonstrated that laser attenuation increases with the continuous increase of particle size and concentration.
Literature
1.
go back to reference Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRefPubMed Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRefPubMed
2.
go back to reference Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperth 19:252–266CrossRef Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperth 19:252–266CrossRef
3.
go back to reference Persons MC, Schroder T, Ramo OJ, Puolakkainen P, Lehtonen E (1991) Contact Nd:YAG laser potentiates the tumor cell killing effect of hyperthermia. Lasers Surg Med 11:595–600CrossRef Persons MC, Schroder T, Ramo OJ, Puolakkainen P, Lehtonen E (1991) Contact Nd:YAG laser potentiates the tumor cell killing effect of hyperthermia. Lasers Surg Med 11:595–600CrossRef
4.
go back to reference Patel JM, Evrensel CA, Fuchs A, Sutrisno J (2014) Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study. Lasers Med Sci 30:165–172CrossRefPubMed Patel JM, Evrensel CA, Fuchs A, Sutrisno J (2014) Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study. Lasers Med Sci 30:165–172CrossRefPubMed
5.
go back to reference Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9CrossRef Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9CrossRef
6.
go back to reference Kelly KL, Coronado E, Zhao LL, Schatz GC (2006) The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment. J Phys Chem B 107:668–677CrossRef Kelly KL, Coronado E, Zhao LL, Schatz GC (2006) The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment. J Phys Chem B 107:668–677CrossRef
7.
go back to reference Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Bio-compatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194CrossRefPubMed Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Bio-compatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194CrossRefPubMed
8.
go back to reference Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228CrossRefPubMed Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228CrossRefPubMed
9.
go back to reference Elbialy N, Abdelhamid M, Youssef T (2010) Low power argon laser-induced thermal therapy for subcutaneous Ehrlich carcinoma in mice using spherical gold nanoparticles. J Biomed Nanotechnol 6:687–693CrossRefPubMed Elbialy N, Abdelhamid M, Youssef T (2010) Low power argon laser-induced thermal therapy for subcutaneous Ehrlich carcinoma in mice using spherical gold nanoparticles. J Biomed Nanotechnol 6:687–693CrossRefPubMed
10.
go back to reference Saleh HM, Abdelhamid S, Abdelhamid M, Youssef T, Gohar A (2014) Subcellular toxicity of gold nanoparticles irradiated with 532 nm pulsed laser. Photomed Laser Surg 32(6):360–367CrossRefPubMed Saleh HM, Abdelhamid S, Abdelhamid M, Youssef T, Gohar A (2014) Subcellular toxicity of gold nanoparticles irradiated with 532 nm pulsed laser. Photomed Laser Surg 32(6):360–367CrossRefPubMed
11.
go back to reference Xu X, Meade A, Bayazitoglu Y (2013) Feasibility of selective nanoparticle-assisted photothermal treatment for an embedded liver tumor. Lasers Med Sci 28(4):1159–68CrossRefPubMed Xu X, Meade A, Bayazitoglu Y (2013) Feasibility of selective nanoparticle-assisted photothermal treatment for an embedded liver tumor. Lasers Med Sci 28(4):1159–68CrossRefPubMed
12.
go back to reference Iancu C (2013) Photothermal therapy of human cancers (PTT) using gold nanoparticles. Biotechnol Mol Biol Nanomed 1:53–60 Iancu C (2013) Photothermal therapy of human cancers (PTT) using gold nanoparticles. Biotechnol Mol Biol Nanomed 1:53–60
13.
go back to reference Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of nanocrystals. Int Rev Phys Chem 19:409–453CrossRef Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of nanocrystals. Int Rev Phys Chem 19:409–453CrossRef
14.
go back to reference Hartland GV (2004) Electron–phonon coupling and heat dissipation in metal nanoparticles. Int J Nanotechnol 1:307–327CrossRef Hartland GV (2004) Electron–phonon coupling and heat dissipation in metal nanoparticles. Int J Nanotechnol 1:307–327CrossRef
15.
go back to reference Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101:3713–3719CrossRef Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101:3713–3719CrossRef
16.
go back to reference Dong E, Zhao Z, Wang M, Xie Y, Li S, Shao P, Cheng L, Xu RX (2015) Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging. J Biomed Opt 20(12):121311CrossRefPubMed Dong E, Zhao Z, Wang M, Xie Y, Li S, Shao P, Cheng L, Xu RX (2015) Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging. J Biomed Opt 20(12):121311CrossRefPubMed
17.
go back to reference Drakaki E, Psycharakis S, Makropoulou M, Serafetinides A (2005) Optical properties and chromophore concentration measurements in tissue-like phantoms. Opt Commun 254:40–51CrossRef Drakaki E, Psycharakis S, Makropoulou M, Serafetinides A (2005) Optical properties and chromophore concentration measurements in tissue-like phantoms. Opt Commun 254:40–51CrossRef
18.
go back to reference Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 11:041101CrossRef Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 11:041101CrossRef
19.
go back to reference Bazrafshan B, Hübner F, Farshid P, Hammerstingl R, Paul J, Vogel V, Mäntele W, Vogl TJ (2014) Temperature imaging of laser-induced thermotherapy (LITT) by MRI: evaluation of different sequences in phantom. Lasers Med Sci 29(1):173–83CrossRefPubMed Bazrafshan B, Hübner F, Farshid P, Hammerstingl R, Paul J, Vogel V, Mäntele W, Vogl TJ (2014) Temperature imaging of laser-induced thermotherapy (LITT) by MRI: evaluation of different sequences in phantom. Lasers Med Sci 29(1):173–83CrossRefPubMed
20.
go back to reference Martelli F, Bianco SD, Spinelli L, Cavalieri S, Ninni PD, Binzoni T, Jelzow A, Macdonald R, Wabnitz H (2015) Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements. J Biomed Opt 20(11):115001CrossRefPubMed Martelli F, Bianco SD, Spinelli L, Cavalieri S, Ninni PD, Binzoni T, Jelzow A, Macdonald R, Wabnitz H (2015) Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements. J Biomed Opt 20(11):115001CrossRefPubMed
21.
go back to reference Hartleb C (2005) Creation and evaluation of solid optical tissue phantoms for biomedical applications. Ph.D. Thesis - Linkoping University Hartleb C (2005) Creation and evaluation of solid optical tissue phantoms for biomedical applications. Ph.D. Thesis - Linkoping University
22.
go back to reference Tuchin V (2007) Tissue optics, light scattering methods and instruments for medical diagnosis, 2nd edition (Bellingham, Washington, USA), SPIE, Bellingham, Washington 98227-0010 USA Tuchin V (2007) Tissue optics, light scattering methods and instruments for medical diagnosis, 2nd edition (Bellingham, Washington, USA), SPIE, Bellingham, Washington 98227-0010 USA
23.
go back to reference Yella A, Li BQ, Mohanty P, Liu C (2013) Measurement of temperature distribution and evolution during surface plasma resonance heating of gold nanoshells-embedded phantom tissue. Exp Thermal Fluid Sci 47:34–39CrossRef Yella A, Li BQ, Mohanty P, Liu C (2013) Measurement of temperature distribution and evolution during surface plasma resonance heating of gold nanoshells-embedded phantom tissue. Exp Thermal Fluid Sci 47:34–39CrossRef
24.
go back to reference Arum Y, Song Y, Oh J (2011) Controlling the optimum dose of AMPTS functionalized-magnetite nanoparticles for hyperthermia cancer therapy. Appl Nanosci 1:237–246CrossRef Arum Y, Song Y, Oh J (2011) Controlling the optimum dose of AMPTS functionalized-magnetite nanoparticles for hyperthermia cancer therapy. Appl Nanosci 1:237–246CrossRef
25.
go back to reference Turkevich J, Stevenson PC, Hillier JA (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef Turkevich J, Stevenson PC, Hillier JA (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef
26.
go back to reference Frens G (1973) Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRef Frens G (1973) Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRef
27.
go back to reference Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66:274–280CrossRefPubMed Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66:274–280CrossRefPubMed
28.
go back to reference Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMed Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMed
29.
go back to reference Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef
30.
go back to reference Kurita H, Takami A, Koda S (1998) Size reduction of gold particles in aqueous solution by pulsed laser irradiation. Appl Phys Lett 72:789–791CrossRef Kurita H, Takami A, Koda S (1998) Size reduction of gold particles in aqueous solution by pulsed laser irradiation. Appl Phys Lett 72:789–791CrossRef
31.
go back to reference Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232CrossRef Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232CrossRef
32.
go back to reference Inasawa S, Sugiyama M, Koda S (2003) Size controlled formation of gold nanoparticles using photochemical growth and photothermal size reduction by 308 nm laser pulses. Jpn J Appl Phys 42:6705–6712CrossRef Inasawa S, Sugiyama M, Koda S (2003) Size controlled formation of gold nanoparticles using photochemical growth and photothermal size reduction by 308 nm laser pulses. Jpn J Appl Phys 42:6705–6712CrossRef
33.
go back to reference Han Y, Jiang J, Seong NL, Ying JY (2008) Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 24:5842–5848CrossRefPubMed Han Y, Jiang J, Seong NL, Ying JY (2008) Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 24:5842–5848CrossRefPubMed
34.
go back to reference Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58:3–7CrossRefPubMed Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58:3–7CrossRefPubMed
35.
go back to reference Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefPubMed Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefPubMed
36.
go back to reference Setoura K, Okada Y, Werner D, Hashimoto S (2013) Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7:7874–7885CrossRefPubMed Setoura K, Okada Y, Werner D, Hashimoto S (2013) Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7:7874–7885CrossRefPubMed
37.
go back to reference Sassaroli E, Li KC, O’Neill BE (2009) Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys Med Biol 54:5541–60CrossRefPubMed Sassaroli E, Li KC, O’Neill BE (2009) Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys Med Biol 54:5541–60CrossRefPubMed
38.
go back to reference Hu M, Wang X, Hartland GV, Maceira VS, Marzan LML (2003) Heat dissipation in gold–silica core-shell nanoparticles. Chem Phys Lett 372:767–772CrossRef Hu M, Wang X, Hartland GV, Maceira VS, Marzan LML (2003) Heat dissipation in gold–silica core-shell nanoparticles. Chem Phys Lett 372:767–772CrossRef
39.
go back to reference Mohamed MB, Ahmadi TS, Link S, Braun M, El-Sayed MA (2001) Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chem Phys Lett 343:55–63CrossRef Mohamed MB, Ahmadi TS, Link S, Braun M, El-Sayed MA (2001) Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chem Phys Lett 343:55–63CrossRef
40.
go back to reference Arbouet A, Voisin C, Christofilos D, Langot P, Fatti ND, Vallee F, Lerme J, Celep G, Cottancin E, Gaudry M, Pellarin M, Broyer M, Maillard M, Pileni MP, Treguer M (2003) Electron–phonon scattering in metal clusters. Phys Rev Lett 90:177401CrossRefPubMed Arbouet A, Voisin C, Christofilos D, Langot P, Fatti ND, Vallee F, Lerme J, Celep G, Cottancin E, Gaudry M, Pellarin M, Broyer M, Maillard M, Pileni MP, Treguer M (2003) Electron–phonon scattering in metal clusters. Phys Rev Lett 90:177401CrossRefPubMed
41.
go back to reference Voisin C, Christofilos D, Fatti ND, Vallee F, Prevel B, Cottancin E, Lerme J, Pellarin M, Broyer M (2000) Size-dependent electron–electron interactions in metal nanoparticles. Phys Rev Lett 85:2200–2203CrossRefPubMed Voisin C, Christofilos D, Fatti ND, Vallee F, Prevel B, Cottancin E, Lerme J, Pellarin M, Broyer M (2000) Size-dependent electron–electron interactions in metal nanoparticles. Phys Rev Lett 85:2200–2203CrossRefPubMed
Metadata
Title
Effect of size, concentration, and type of spherical gold nanoparticles on heat evolution following laser irradiation using tissue-simulating phantoms
Authors
Hossam Zakaria
Wessameldin S. Abdelaziz
Tareq Youssef
Publication date
01-05-2016
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 4/2016
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1886-y

Other articles of this Issue 4/2016

Lasers in Medical Science 4/2016 Go to the issue