Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Effect of siRNA-silencing of SALL2 gene on growth, migration and invasion of human ovarian carcinoma A2780 cells

Authors: Fang Miao, Xueshan Zhang, Yanning Cao, Yue Wang, Xiaoshu Zhang

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

The role of Spalt-like gene-2 (SALL2) in tumorigenesis remains incompletely elucidated. This study investigated the effects of SALL2 on human ovarian carcinoma (OC) A2780 cells and the probable mechanism.

Methods

Expression of SALL2 in human OC cell lines were detected by reverse transcription PCR (RT-PCR) and Western blot analysis. A2780 cells were transfected with small-interfering ribonucleic acid (siRNA) to silence SALL2. SALL2 expression was detected by RT-PCR, Western blot analysis and immunofluorescence assay. Cell proliferation was measured by CCK-8 assay and flow cytometry (FCM). Apoptosis was measured by FCM. Cell migration was detected by real-time cell analysis. Cell invasion was detected by transwell assay. mRNA expression of p21 was detected by quantitative real-time PCR. Western blot analysis was used to determine the expression of matrix metalloproteinase (MMP)2, MMP9, protein kinase B (PKB, also called Akt), and phosphorylated-Akt (p-Akt).

Results

SALL2 was expressed in six OC cell lines, and the expression was the highest in A2780 cells. Compared with that in the Scramble group, SALL2 expression in A2780 was downregulated after transfection with siRNA-2 and siRNA-3 for 48 h. Compared with that in the Scramble group, proliferation of A2780 cells in the siRNA-2 group increased after transfection for 24, 48 and 72 h. In the siRNA-2 group, the proportion of A2780 cells decreased in the G0/G1 phase, and cell apoptosis decreased after transfection for 48 h. Compared with that in the Scramble group, the cell migration and invasion abilities of A2780 cells increased. Compared with that in the Scramble group, p21 mRNA expression in A2780 cells decreased after transfection with siRNA2. When SALL2 was silenced, the expression of MMP2/9 and p-Akt in A2780 cells increased. Furthermore, the PI3K inhibitor LY294002 could effectively reversed SALL2 siRNA-induced phosphorylation of Akt, migration and invasion of A2780 cells.

Conclusion

Transient silencing of SALL2 promotes cell proliferation, migration, and invasion, and inhibits apoptosis of A2780 cells. In SALL2 siRNA-silenced cells, p21 expression was decreased. SALL2 knockdown by siRNA induces the migration and invasion of A2780 cells; this phenomenon is possibly associated with the increased expression of MMP2/9 and the activation of the PI3K/Akt signalling pathway.
Appendix
Available only for authorised users
Literature
1.
2.
4.
go back to reference Szajnik M, Czystowska-Kuźmicz M, Elishaev E, Whiteside TL, et al. Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Rev Mol Diagn. 2016;16(8):811–26.CrossRefPubMedPubMedCentral Szajnik M, Czystowska-Kuźmicz M, Elishaev E, Whiteside TL, et al. Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Rev Mol Diagn. 2016;16(8):811–26.CrossRefPubMedPubMedCentral
6.
go back to reference Gu H, Li D, Sung CK, Yim H, et al. DNA-binding and regulatory properties of the transcription factor and putative tumor suppressor p150(Sal2). Biochim Biophys Acta. 2011;1809(4–6):276–83.CrossRefPubMedPubMedCentral Gu H, Li D, Sung CK, Yim H, et al. DNA-binding and regulatory properties of the transcription factor and putative tumor suppressor p150(Sal2). Biochim Biophys Acta. 2011;1809(4–6):276–83.CrossRefPubMedPubMedCentral
8.
go back to reference Sung CK, Dahl J, Yim H, Rodig S, Benjamin TL. Transcriptional and posttranslational regulation of the quiescence factor and putative tumor suppressor p150(Sal2). FASEB J. 2011;25:1275–83.CrossRefPubMedPubMedCentral Sung CK, Dahl J, Yim H, Rodig S, Benjamin TL. Transcriptional and posttranslational regulation of the quiescence factor and putative tumor suppressor p150(Sal2). FASEB J. 2011;25:1275–83.CrossRefPubMedPubMedCentral
9.
go back to reference Haybaeck J, O’Connor T, Spilka R, Spizzo G, Ensinger C, Mikuz G, Brunhuber T, Vogetseder A, Theurl I, Salvenmoser W. Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Res. 2010;30(4):1047–55.PubMed Haybaeck J, O’Connor T, Spilka R, Spizzo G, Ensinger C, Mikuz G, Brunhuber T, Vogetseder A, Theurl I, Salvenmoser W. Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Res. 2010;30(4):1047–55.PubMed
10.
go back to reference Chen G, Burger MM. p150 overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation. Int J Cancer. 2004;112:393–8.CrossRefPubMed Chen G, Burger MM. p150 overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation. Int J Cancer. 2004;112:393–8.CrossRefPubMed
11.
go back to reference Sung CK, Li D, Andrews E, Drapkin R, Benjamin T. Promoter methylation of the SALL2 tumor suppressor gene in ovarian cancers. Mol Oncol. 2013;7:419–27.CrossRefPubMed Sung CK, Li D, Andrews E, Drapkin R, Benjamin T. Promoter methylation of the SALL2 tumor suppressor gene in ovarian cancers. Mol Oncol. 2013;7:419–27.CrossRefPubMed
13.
go back to reference Chai L. The role of HSAL (SALL) genes in proliferation and differentiation in normal hematopoiesis and leukemogenesis. Transfusion. 2011;51(4):87–93.CrossRef Chai L. The role of HSAL (SALL) genes in proliferation and differentiation in normal hematopoiesis and leukemogenesis. Transfusion. 2011;51(4):87–93.CrossRef
14.
go back to reference Benelli R, Monteghirfo S, Venè R, Tosetti F, Ferrari N. The chemo preventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol Cancer. 2010;9:142.CrossRefPubMedPubMedCentral Benelli R, Monteghirfo S, Venè R, Tosetti F, Ferrari N. The chemo preventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol Cancer. 2010;9:142.CrossRefPubMedPubMedCentral
15.
go back to reference Parroche P, Touka M, Mansour M, et al. Human papillomavirus type 16 E6 inhibits p21(WAF1) transcription independently of p53 by inactivating p150(Sal2). Virology. 2011;417(2):443–8.CrossRefPubMed Parroche P, Touka M, Mansour M, et al. Human papillomavirus type 16 E6 inhibits p21(WAF1) transcription independently of p53 by inactivating p150(Sal2). Virology. 2011;417(2):443–8.CrossRefPubMed
16.
go back to reference Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24(10):x16–21.CrossRefPubMed Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24(10):x16–21.CrossRefPubMed
17.
go back to reference Jin YF, Huang MH, Wang YY, et al. C-yes enhance tumor migration and invasion via PI3K/AKT pathway in epithelial ovarian cancer. Exp Mol Pathol. 2016;101(1):50–7.CrossRefPubMed Jin YF, Huang MH, Wang YY, et al. C-yes enhance tumor migration and invasion via PI3K/AKT pathway in epithelial ovarian cancer. Exp Mol Pathol. 2016;101(1):50–7.CrossRefPubMed
18.
go back to reference Sweetman D, Munsterberg A. The vertebrate spalt genes in development and disease. Dev Biol. 2006;293:285–93. Sweetman D, Munsterberg A. The vertebrate spalt genes in development and disease. Dev Biol. 2006;293:285–93.
19.
go back to reference De Celis JF, Barrio R. Regulation and function of Spalt proteins during animal development. Int J Dev Biol. 2009;53:1385–98.CrossRefPubMed De Celis JF, Barrio R. Regulation and function of Spalt proteins during animal development. Int J Dev Biol. 2009;53:1385–98.CrossRefPubMed
20.
go back to reference Kohlhase J, Taschner PE, Burfeind P, Pasche B, Newman B, Blanck C, et al. Molecular analysis of SALL1 mutations in Townes-brocks syndrome. Am J Hum Genet. 1999;64:435–45.CrossRefPubMedPubMedCentral Kohlhase J, Taschner PE, Burfeind P, Pasche B, Newman B, Blanck C, et al. Molecular analysis of SALL1 mutations in Townes-brocks syndrome. Am J Hum Genet. 1999;64:435–45.CrossRefPubMedPubMedCentral
21.
go back to reference Parrish M, Ott T, Lance-Jones C, Schuetz G, Schwaeger-Nickolenko A, Monaghan AP. Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality. Mol Cell Biol. 2004;24:7102–12.CrossRefPubMedPubMedCentral Parrish M, Ott T, Lance-Jones C, Schuetz G, Schwaeger-Nickolenko A, Monaghan AP. Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality. Mol Cell Biol. 2004;24:7102–12.CrossRefPubMedPubMedCentral
22.
go back to reference De Melo J, Peng GH, Chen S, Blackshaw S. The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development. 2011;138:2325–36.CrossRefPubMedPubMedCentral De Melo J, Peng GH, Chen S, Blackshaw S. The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development. 2011;138:2325–36.CrossRefPubMedPubMedCentral
23.
go back to reference Yamaguchi YL, Tanaka SS, KumagaiM FY, Terabayashi T, Matsui Y, Nishinakamura R. Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem Cells. 2015;33(1):289–300.CrossRefPubMed Yamaguchi YL, Tanaka SS, KumagaiM FY, Terabayashi T, Matsui Y, Nishinakamura R. Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem Cells. 2015;33(1):289–300.CrossRefPubMed
24.
go back to reference Al-Baradie R, Yamada K, St Hilaire C, Chan WM, Andrews C, McIntosh N, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71:1195–9.CrossRefPubMedPubMedCentral Al-Baradie R, Yamada K, St Hilaire C, Chan WM, Andrews C, McIntosh N, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71:1195–9.CrossRefPubMedPubMedCentral
25.
go back to reference Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, et al. SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat. 2005;26:176–83.CrossRefPubMed Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, et al. SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat. 2005;26:176–83.CrossRefPubMed
26.
go back to reference Liu J, Wang L, Yang A, et al. Up-regulation of SALL4 associated with poor prognosis in gastric cancer. Hepato-Gastroenterology. 2014;61(133):1459–64.PubMed Liu J, Wang L, Yang A, et al. Up-regulation of SALL4 associated with poor prognosis in gastric cancer. Hepato-Gastroenterology. 2014;61(133):1459–64.PubMed
27.
go back to reference Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–23.CrossRefPubMed Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–23.CrossRefPubMed
28.
go back to reference CM LI, Guo M, Borczuk A, et al. Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol. 2002;160(2):2181–90. CM LI, Guo M, Borczuk A, et al. Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol. 2002;160(2):2181–90.
29.
go back to reference Nielsen TO, Hsu FD, O’Connell JX, et al. Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol. 2003;163(4):1449–56.CrossRefPubMedPubMedCentral Nielsen TO, Hsu FD, O’Connell JX, et al. Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol. 2003;163(4):1449–56.CrossRefPubMedPubMedCentral
30.
go back to reference Estilo CL, O-charoenrat P, Talbot S, et al. Oral tongue cancer gene expression profiling: identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer. 2009;9:11.CrossRefPubMedPubMedCentral Estilo CL, O-charoenrat P, Talbot S, et al. Oral tongue cancer gene expression profiling: identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer. 2009;9:11.CrossRefPubMedPubMedCentral
31.
go back to reference Buck A, Kispert A, Kohlhase J. Embryonic expression of the murine homologue of SALL1, the gene mutated in Townes–brocks syndrome. Mech Dev. 2001;104(1–2):143–6.CrossRefPubMed Buck A, Kispert A, Kohlhase J. Embryonic expression of the murine homologue of SALL1, the gene mutated in Townes–brocks syndrome. Mech Dev. 2001;104(1–2):143–6.CrossRefPubMed
32.
go back to reference Escobar D, Hepp MI, Farkas C, et al. Sall2 is required for proapoptotic Noxa expression and genotoxic stress-induced apoptosis by doxorubicin. Cell Death Dis. 2015;6(7):1–4.CrossRef Escobar D, Hepp MI, Farkas C, et al. Sall2 is required for proapoptotic Noxa expression and genotoxic stress-induced apoptosis by doxorubicin. Cell Death Dis. 2015;6(7):1–4.CrossRef
33.
34.
go back to reference Zheng HW, Kebin C, Shi L, et al. Sal-like protein 2 upregulates p16 expression through a proximal promoter element. Cancer Sci. 2015;106(3):253–61.CrossRef Zheng HW, Kebin C, Shi L, et al. Sal-like protein 2 upregulates p16 expression through a proximal promoter element. Cancer Sci. 2015;106(3):253–61.CrossRef
35.
go back to reference Pincheira R, Baerwald M, Dunbar JD, et al. Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. EMBO J. 2009;28(3):261–73.CrossRefPubMedPubMedCentral Pincheira R, Baerwald M, Dunbar JD, et al. Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. EMBO J. 2009;28(3):261–73.CrossRefPubMedPubMedCentral
36.
go back to reference Baulch JE, Geidzinski E, Tran KK, Yu L, Zhou YH, Limoli CL. Irradiation of primary human gliomas triggers dynamic and aggressive survival responses involving microvesicle signaling. Environ Mol Mutagen. 2016;57(5):405–15.CrossRefPubMed Baulch JE, Geidzinski E, Tran KK, Yu L, Zhou YH, Limoli CL. Irradiation of primary human gliomas triggers dynamic and aggressive survival responses involving microvesicle signaling. Environ Mol Mutagen. 2016;57(5):405–15.CrossRefPubMed
37.
go back to reference Ardalan Khales S, Abbaszadegan MR, Abdollahi A, Raeisossadati R, Tousi MF, Forghanifard MM. SALL4 as a new biomarker for early colorectal cancers. Cancer Res Clin Oncol. 2015;141:229–35.CrossRef Ardalan Khales S, Abbaszadegan MR, Abdollahi A, Raeisossadati R, Tousi MF, Forghanifard MM. SALL4 as a new biomarker for early colorectal cancers. Cancer Res Clin Oncol. 2015;141:229–35.CrossRef
38.
go back to reference Yan Y, Liang H, Li T, et al. The MMP1, MMP2, and MMP9 gene polymorphisms and susceptibility to bladder cancer: a meta analysis. Tumor Biol. 2014;35(4):3047–52.CrossRef Yan Y, Liang H, Li T, et al. The MMP1, MMP2, and MMP9 gene polymorphisms and susceptibility to bladder cancer: a meta analysis. Tumor Biol. 2014;35(4):3047–52.CrossRef
39.
go back to reference Zhao H, Yuan X, Jiang J, et al. Antimetastatic effects of licochalcone B on human bladder carcinoma T24 by inhibition of matrix metalloproteinases 9 and NF-kB activity. J. Basic Clin Pharmacol Toxicol. 2014;115(6):527–33.CrossRefPubMed Zhao H, Yuan X, Jiang J, et al. Antimetastatic effects of licochalcone B on human bladder carcinoma T24 by inhibition of matrix metalloproteinases 9 and NF-kB activity. J. Basic Clin Pharmacol Toxicol. 2014;115(6):527–33.CrossRefPubMed
40.
go back to reference Symowicz J, Adley BP, Gleason KJ, et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res. 2007;67(5):2030–9.CrossRefPubMed Symowicz J, Adley BP, Gleason KJ, et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res. 2007;67(5):2030–9.CrossRefPubMed
42.
go back to reference Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by P13K/Akt/mTOR/P70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol. 2004;287(127):c281–91.CrossRefPubMed Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by P13K/Akt/mTOR/P70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol. 2004;287(127):c281–91.CrossRefPubMed
43.
go back to reference Sheng S, Qiao M, Pardee AB. Metastasis and AKT activation. Cell Physiol. 2009;218:451–4.CrossRef Sheng S, Qiao M, Pardee AB. Metastasis and AKT activation. Cell Physiol. 2009;218:451–4.CrossRef
44.
go back to reference Liao AC, Kuo CC, Huang YC, et al. Naringenin in inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Mol Med Rep. 2014;10(3):1531–6.CrossRefPubMed Liao AC, Kuo CC, Huang YC, et al. Naringenin in inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Mol Med Rep. 2014;10(3):1531–6.CrossRefPubMed
Metadata
Title
Effect of siRNA-silencing of SALL2 gene on growth, migration and invasion of human ovarian carcinoma A2780 cells
Authors
Fang Miao
Xueshan Zhang
Yanning Cao
Yue Wang
Xiaoshu Zhang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3843-y

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine