Skip to main content
Top
Published in: BMC Ophthalmology 1/2017

Open Access 01-12-2017 | Research article

Effect of Orthokeratology on myopia progression: twelve-year results of a retrospective cohort study

Authors: Yueh-Chang Lee, Jen-Hung Wang, Cheng-Jen Chiu

Published in: BMC Ophthalmology | Issue 1/2017

Login to get access

Abstract

Background

Several studies reported the efficacy of orthokeratology for myopia control. Somehow, there is limited publication with follow-up longer than 3 years. This study aims to research whether overnight orthokeratology influences the progression rate of the manifest refractive error of myopic children in a longer follow-up period (up to 12 years). And if changes in progression rate are found, to investigate the relationship between refractive changes and different baseline factors, including refraction error, wearing age and lens replacement frequency. In addition, this study collects long-term safety profile of overnight orthokeratology.

Methods

This is a retrospective study of sixty-six school-age children who received overnight orthokeratology correction between January 1998 and December 2013. Thirty-six subjects whose baseline age and refractive error matched with those in the orthokeratology group were selected to form control group. These subjects were followed up at least for 12 months. Manifest refractions, cycloplegic refractions, uncorrected and best-corrected visual acuities, power vector of astigmatism, corneal curvature, and lens replacement frequency were obtained for analysis.

Results

Data of 203 eyes were derived from 66 orthokeratology subjects (31 males and 35 females) and 36 control subjects (22 males and 14 females) enrolled in this study. Their wearing ages ranged from 7 years to 16 years (mean ± SE, 11.72 ± 0.18 years). The follow-up time ranged from 1 year to 13 years (mean ± SE, 6.32 ± 0.15 years). At baseline, their myopia ranged from −0.5 D to −8.0 D (mean ± SE, −3.70 ± 0.12 D), and astigmatism ranged from 0 D to −3.0 D (mean ± SE, −0.55 ± 0.05 D). Comparing with control group, orthokeratology group had a significantly (p < 0.001) lower trend of refractive error change during the follow-up periods. According to the analysis results of GEE model, greater power of astigmatism was found to be associated with increased change of refractive error during follow-up years.

Conclusions

Overnight orthokeratology was effective in slowing myopia progression over a twelve-year follow-up period and demonstrated a clinically acceptable safety profile. Initial higher astigmatism power was found to be associated with increased change of refractive error during follow-up years.
Literature
2.
go back to reference Javitt JC, Chiang YP. The socio-economic aspects of laser refractive surgery. Arch Ophthalmol. 1994;112:1526–30.CrossRefPubMed Javitt JC, Chiang YP. The socio-economic aspects of laser refractive surgery. Arch Ophthalmol. 1994;112:1526–30.CrossRefPubMed
5.
go back to reference Wensor M, McCarty CA, Taylor HR. Prevalence and risk factors of myopia in Victoria, Australia. Arch Ophthalmol. 1999;117:658–63.CrossRefPubMed Wensor M, McCarty CA, Taylor HR. Prevalence and risk factors of myopia in Victoria, Australia. Arch Ophthalmol. 1999;117:658–63.CrossRefPubMed
7.
go back to reference Lin LL, Shih YF, Hsiao CK, et al. Epidemiologic study of the prevalence and severity of myopia among school children in Taiwan in 2000. J Formos Med Assoc. 2001;100:684–91.PubMed Lin LL, Shih YF, Hsiao CK, et al. Epidemiologic study of the prevalence and severity of myopia among school children in Taiwan in 2000. J Formos Med Assoc. 2001;100:684–91.PubMed
8.
go back to reference Wang TJ, Chiang TH, Wang TH, et al. Changes of the ocular refraction among freshmen in National Taiwan University between 1988 and 2005. Eye(Lond). 2009;23:1168–9. Wang TJ, Chiang TH, Wang TH, et al. Changes of the ocular refraction among freshmen in National Taiwan University between 1988 and 2005. Eye(Lond). 2009;23:1168–9.
9.
go back to reference Liu HH, Xu L, Wang YX, et al. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing eye study. Ophthalmology. 2010;117:1763–8.CrossRefPubMed Liu HH, Xu L, Wang YX, et al. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing eye study. Ophthalmology. 2010;117:1763–8.CrossRefPubMed
10.
go back to reference Yannuzzi LA, Sorenson JA, Sobel RS, et al. Risk-factors for idiopathic rhegmatogenous retinal-detachment. Am J Epidemiol. 1993;137:749–57. Yannuzzi LA, Sorenson JA, Sobel RS, et al. Risk-factors for idiopathic rhegmatogenous retinal-detachment. Am J Epidemiol. 1993;137:749–57.
11.
go back to reference Bourne RR, Dineen BP, Ali SM, et al. Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and low vision survey of Bangladesh. Ophthalmology. 2004;111:1150–60.CrossRefPubMed Bourne RR, Dineen BP, Ali SM, et al. Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and low vision survey of Bangladesh. Ophthalmology. 2004;111:1150–60.CrossRefPubMed
13.
go back to reference Vitale S, Schein OD, Meinert CL, et al. The refractive status and vision profile: a questionnaire to measure vision-related quality of life in persons with refractive error. Ophthalmology. 2000;107:1529–39.CrossRefPubMed Vitale S, Schein OD, Meinert CL, et al. The refractive status and vision profile: a questionnaire to measure vision-related quality of life in persons with refractive error. Ophthalmology. 2000;107:1529–39.CrossRefPubMed
15.
go back to reference Chia C, Chua W-H, Cheung Y-B, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1% and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119:347–54.CrossRefPubMed Chia C, Chua W-H, Cheung Y-B, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1% and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119:347–54.CrossRefPubMed
16.
go back to reference Siatkowski RM, Cotter SA, Crockett RS, et al. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J AAPOS. 2008;12:332–9.CrossRefPubMed Siatkowski RM, Cotter SA, Crockett RS, et al. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J AAPOS. 2008;12:332–9.CrossRefPubMed
17.
go back to reference Tan DT, Lam DS, Chua WH, et al. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology. 2005;112:84–91.CrossRefPubMed Tan DT, Lam DS, Chua WH, et al. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology. 2005;112:84–91.CrossRefPubMed
18.
go back to reference Siatkowski RM, Cotter S, Miller JM, et al. Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: a 1-year, multicenter, double-masked, placebo-controlled parallel study. Arch Ophthalmol. 2004;122:1667–74.CrossRefPubMed Siatkowski RM, Cotter S, Miller JM, et al. Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: a 1-year, multicenter, double-masked, placebo-controlled parallel study. Arch Ophthalmol. 2004;122:1667–74.CrossRefPubMed
19.
go back to reference Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci. 2000;77:395–401.CrossRefPubMed Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci. 2000;77:395–401.CrossRefPubMed
20.
go back to reference Cheng D, Schmid KL, Woo GC, et al. Randomized trial effect of bifocal and prismatic bifocal spectacles on myopia progression. Arch Ophthalmol. 2010;128:12–9.CrossRefPubMed Cheng D, Schmid KL, Woo GC, et al. Randomized trial effect of bifocal and prismatic bifocal spectacles on myopia progression. Arch Ophthalmol. 2010;128:12–9.CrossRefPubMed
21.
go back to reference Leung JT, Brown B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom Vis Sci. 1999;76:346–54.CrossRefPubMed Leung JT, Brown B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom Vis Sci. 1999;76:346–54.CrossRefPubMed
22.
go back to reference Yang Z, Lan W, Ge J, et al. The effectiveness of progressive addition lenses on the progression of myopia in Chinese children. Ophthalmic Physiol Opt. 2009;29:41–8.CrossRefPubMed Yang Z, Lan W, Ge J, et al. The effectiveness of progressive addition lenses on the progression of myopia in Chinese children. Ophthalmic Physiol Opt. 2009;29:41–8.CrossRefPubMed
23.
go back to reference Sankaridurg P, Donovan L, Varnas S, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;87:631–41.CrossRefPubMedPubMedCentral Sankaridurg P, Donovan L, Varnas S, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;87:631–41.CrossRefPubMedPubMedCentral
24.
go back to reference Aller TA, Wildsoet C. Bifocal soft contact lenses as a possible myopia control treatment: a case report involving identical twins. Clin Exp Optom. 2008;91:394–9.CrossRefPubMed Aller TA, Wildsoet C. Bifocal soft contact lenses as a possible myopia control treatment: a case report involving identical twins. Clin Exp Optom. 2008;91:394–9.CrossRefPubMed
25.
go back to reference Stone J. The possible influence of contact lenses on myopia. Br J Physiol Opt. 1976;31:89–114.PubMed Stone J. The possible influence of contact lenses on myopia. Br J Physiol Opt. 1976;31:89–114.PubMed
26.
go back to reference Grosvenor T, Perrigin J, Perrigin D, et al. Use of silicone-acrylate contact lenses for the control of myopia. Results after two years of lens wear. Optom Vis Sci. 1989;66:41–7.CrossRefPubMed Grosvenor T, Perrigin J, Perrigin D, et al. Use of silicone-acrylate contact lenses for the control of myopia. Results after two years of lens wear. Optom Vis Sci. 1989;66:41–7.CrossRefPubMed
27.
go back to reference Perrigin J, Perrigin D, Quintero S, et al. Silicone acrylate contact lenses for myopia control: 3-year results. Optom Vis Sci. 1990;67:764–9.CrossRefPubMed Perrigin J, Perrigin D, Quintero S, et al. Silicone acrylate contact lenses for myopia control: 3-year results. Optom Vis Sci. 1990;67:764–9.CrossRefPubMed
28.
go back to reference Katz J, Schein OD, Levy B, et al. A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am J Ophthalmol. 2003;136:82–90.CrossRefPubMed Katz J, Schein OD, Levy B, et al. A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am J Ophthalmol. 2003;136:82–90.CrossRefPubMed
29.
go back to reference Walline JJ, Jones LA, Mutti DO, et al. A randomized trial of the effects of rigid contact lenses on myopia progression. Arch Ophthalmol. 2004;122:1760–6.CrossRefPubMed Walline JJ, Jones LA, Mutti DO, et al. A randomized trial of the effects of rigid contact lenses on myopia progression. Arch Ophthalmol. 2004;122:1760–6.CrossRefPubMed
30.
go back to reference Cooper J, Schulman E, Jamal N. Current status on the development and treatment of myopia. Optometry. 2012;83:179–99.PubMed Cooper J, Schulman E, Jamal N. Current status on the development and treatment of myopia. Optometry. 2012;83:179–99.PubMed
33.
go back to reference Nichols JJ, Marsich MM, Nguyen M, et al. Overnight orthokeratology. Optom Vis Sci. 2000;77:252–9.CrossRefPubMed Nichols JJ, Marsich MM, Nguyen M, et al. Overnight orthokeratology. Optom Vis Sci. 2000;77:252–9.CrossRefPubMed
35.
go back to reference Cheung SW, Cho P, Chui WS, et al. Refractive error and visual acuity changes in orthokeratology patients. Optom Vis Sci. 2007;84:410–6.CrossRefPubMed Cheung SW, Cho P, Chui WS, et al. Refractive error and visual acuity changes in orthokeratology patients. Optom Vis Sci. 2007;84:410–6.CrossRefPubMed
36.
go back to reference Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30:71–80.CrossRefPubMed Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30:71–80.CrossRefPubMed
37.
go back to reference Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93:1181–5.CrossRefPubMed Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93:1181–5.CrossRefPubMed
38.
go back to reference Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52:2170–4.CrossRefPubMed Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52:2170–4.CrossRefPubMed
39.
go back to reference Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53:7077–85.CrossRefPubMed Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53:7077–85.CrossRefPubMed
40.
go back to reference Hiraoka T, Kakita T, Okamoto F, et al. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913–9.CrossRefPubMed Hiraoka T, Kakita T, Okamoto F, et al. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913–9.CrossRefPubMed
41.
go back to reference Mok AK-H, Chung CS-T. Seven-year retrospective analysis of the myopic control effect of orthokeratology in children: a pilot study. Clin Optom. 2011;3:1–4. Mok AK-H, Chung CS-T. Seven-year retrospective analysis of the myopic control effect of orthokeratology in children: a pilot study. Clin Optom. 2011;3:1–4.
42.
go back to reference Downie LE, Lowe R. Corneal reshaping influences myopic prescription stability (CRIMPS): an analysis of the effect of orthokeratology on childhood myopic refractive stability. Eye & Contact Lens: Science & Clinical Practice. 2013;39:303–10.CrossRef Downie LE, Lowe R. Corneal reshaping influences myopic prescription stability (CRIMPS): an analysis of the effect of orthokeratology on childhood myopic refractive stability. Eye & Contact Lens: Science & Clinical Practice. 2013;39:303–10.CrossRef
43.
go back to reference Taiwan Macro Vision Corp. Professional fitting guide of orthokeratology; 2013. p. pp7–14. Taiwan Macro Vision Corp. Professional fitting guide of orthokeratology; 2013. p. pp7–14.
44.
go back to reference Thibos LN, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci. 1997;74:367–75.CrossRefPubMed Thibos LN, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci. 1997;74:367–75.CrossRefPubMed
46.
go back to reference Fan Q, Teo YY, Saw SM. Application of advanced statistics in ophthalmology. Invest Ophthalmol Vis Sci. 2011;52:6059–65.CrossRefPubMed Fan Q, Teo YY, Saw SM. Application of advanced statistics in ophthalmology. Invest Ophthalmol Vis Sci. 2011;52:6059–65.CrossRefPubMed
47.
go back to reference Donovan L, Sankaridurg P, Ho A, Naduvilath T, et al. Myopia progression rates in urban children wearing single-vision spectacles. Optom Vis Sci. 2012;89:27–32.CrossRefPubMedPubMedCentral Donovan L, Sankaridurg P, Ho A, Naduvilath T, et al. Myopia progression rates in urban children wearing single-vision spectacles. Optom Vis Sci. 2012;89:27–32.CrossRefPubMedPubMedCentral
48.
go back to reference Manny RE, Hussein M, Scheiman M, et al. Tropicamide (1%): an effective cycloplegic agent for myopic children. Invest Ophthalmol Vis Sci. 2001;42:1728–35.PubMed Manny RE, Hussein M, Scheiman M, et al. Tropicamide (1%): an effective cycloplegic agent for myopic children. Invest Ophthalmol Vis Sci. 2001;42:1728–35.PubMed
49.
go back to reference Marsh-Tootle WL, Dong LM, Hyman L, et al. Myopia Progression in Children Wearing Spectacles vs. Switching to Contact Lenses. Optom Vis Sci. 2009; Epub ahead of print. Marsh-Tootle WL, Dong LM, Hyman L, et al. Myopia Progression in Children Wearing Spectacles vs. Switching to Contact Lenses. Optom Vis Sci. 2009; Epub ahead of print.
50.
go back to reference Chen C, Cheung SW, Cho P, et al. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci. 2013;54:6510–7.CrossRefPubMed Chen C, Cheung SW, Cho P, et al. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci. 2013;54:6510–7.CrossRefPubMed
51.
go back to reference Paune J, Cardona G, Quevedo L, et al. Toric double tear reservoir contact lens in orthokeratology for astigmatism. Eye Contact Lens. 2012;38:245–51.CrossRefPubMed Paune J, Cardona G, Quevedo L, et al. Toric double tear reservoir contact lens in orthokeratology for astigmatism. Eye Contact Lens. 2012;38:245–51.CrossRefPubMed
Metadata
Title
Effect of Orthokeratology on myopia progression: twelve-year results of a retrospective cohort study
Authors
Yueh-Chang Lee
Jen-Hung Wang
Cheng-Jen Chiu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2017
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-017-0639-4

Other articles of this Issue 1/2017

BMC Ophthalmology 1/2017 Go to the issue