Skip to main content
Top
Published in: Nutrition & Metabolism 1/2013

Open Access 01-12-2013 | Research

Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle

Authors: Ilkka Heinonen, Bengt Saltin, Jukka Kemppainen, Pirjo Nuutila, Juhani Knuuti, Kari Kalliokoski, Ylva Hellsten

Published in: Nutrition & Metabolism | Issue 1/2013

Login to get access

Abstract

Background

The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood.

Methods

The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA).

Results

Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions.

Conclusion

In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goodyear LJ, Kahn BB: Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998, 49: 235-261. 10.1146/annurev.med.49.1.235.CrossRef Goodyear LJ, Kahn BB: Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998, 49: 235-261. 10.1146/annurev.med.49.1.235.CrossRef
2.
go back to reference Jessen N, Goodyear LJ: Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol. 2005, 99: 330-337. 10.1152/japplphysiol.00175.2005.CrossRef Jessen N, Goodyear LJ: Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol. 2005, 99: 330-337. 10.1152/japplphysiol.00175.2005.CrossRef
3.
go back to reference Rose AJ, Richter EA: Skeletal muscle glucose uptake during exercise: how is it regulated?. Physiology (Bethesda). 2005, 20: 260-270. 10.1152/physiol.00012.2005.CrossRef Rose AJ, Richter EA: Skeletal muscle glucose uptake during exercise: how is it regulated?. Physiology (Bethesda). 2005, 20: 260-270. 10.1152/physiol.00012.2005.CrossRef
4.
go back to reference Balon TW, Nadler JL: Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol. 1994, 77: 2519-2521. Balon TW, Nadler JL: Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol. 1994, 77: 2519-2521.
5.
go back to reference Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y: Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med. 2003, 35: 455-464. 10.1016/S0891-5849(03)00271-5.CrossRef Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y: Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med. 2003, 35: 455-464. 10.1016/S0891-5849(03)00271-5.CrossRef
6.
go back to reference DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981, 30: 1000-1007. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981, 30: 1000-1007.
7.
go back to reference Balon TW, Nadler JL: Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol. 1997, 82: 359-363. Balon TW, Nadler JL: Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol. 1997, 82: 359-363.
8.
go back to reference Bradley SJ, Kingwell BA, McConell GK: Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes. 1999, 48: 1815-1821. 10.2337/diabetes.48.9.1815.CrossRef Bradley SJ, Kingwell BA, McConell GK: Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes. 1999, 48: 1815-1821. 10.2337/diabetes.48.9.1815.CrossRef
9.
go back to reference Etgen GJ, Fryburg DA, Gibbs EM: Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. Diabetes. 1997, 46: 1915-1919. 10.2337/diabetes.46.11.1915.CrossRef Etgen GJ, Fryburg DA, Gibbs EM: Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. Diabetes. 1997, 46: 1915-1919. 10.2337/diabetes.46.11.1915.CrossRef
10.
go back to reference Higaki Y, Hirshman MF, Fujii N, Goodyear LJ: Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes. 2001, 50: 241-247. 10.2337/diabetes.50.2.241.CrossRef Higaki Y, Hirshman MF, Fujii N, Goodyear LJ: Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes. 2001, 50: 241-247. 10.2337/diabetes.50.2.241.CrossRef
11.
go back to reference Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK: Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes. 2002, 51: 2572-2580. 10.2337/diabetes.51.8.2572.CrossRef Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK: Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes. 2002, 51: 2572-2580. 10.2337/diabetes.51.8.2572.CrossRef
12.
go back to reference Lei B, Matsuo K, Labinskyy V, Sharma N, Chandler MP, Ahn A, Hintze TH, Stanley WC, Recchia FA: Exogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo. Proc Natl Acad Sci USA. 2005, 102: 6966-6971. 10.1073/pnas.0500768102.CrossRef Lei B, Matsuo K, Labinskyy V, Sharma N, Chandler MP, Ahn A, Hintze TH, Stanley WC, Recchia FA: Exogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo. Proc Natl Acad Sci USA. 2005, 102: 6966-6971. 10.1073/pnas.0500768102.CrossRef
13.
go back to reference Roberts CK, Barnard RJ, Jasman A, Balon TW: Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol. 1999, 277: E390-E394. Roberts CK, Barnard RJ, Jasman A, Balon TW: Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol. 1999, 277: E390-E394.
14.
go back to reference Durham WJ, Yeckel CW, Miller SL, Gore DC, Wolfe RR: Exogenous nitric oxide increases basal leg glucose uptake in humans. Metabolism. 2003, 52: 662-665. 10.1016/S0026-0495(03)00062-3.CrossRef Durham WJ, Yeckel CW, Miller SL, Gore DC, Wolfe RR: Exogenous nitric oxide increases basal leg glucose uptake in humans. Metabolism. 2003, 52: 662-665. 10.1016/S0026-0495(03)00062-3.CrossRef
15.
go back to reference Henstridge DC, Drew BG, Formosa MF, Natoli AK, Cameron-Smith D, Duffy SJ, Kingwell BA: The effect of the nitric oxide donor sodium nitroprusside on glucose uptake in human primary skeletal muscle cells. Nitric Oxide. 2009, 21: 126-131. 10.1016/j.niox.2009.06.002.CrossRef Henstridge DC, Drew BG, Formosa MF, Natoli AK, Cameron-Smith D, Duffy SJ, Kingwell BA: The effect of the nitric oxide donor sodium nitroprusside on glucose uptake in human primary skeletal muscle cells. Nitric Oxide. 2009, 21: 126-131. 10.1016/j.niox.2009.06.002.CrossRef
16.
go back to reference Henstridge DC, Kingwell BA, Formosa MF, Drew BG, McConell GK, Duffy SJ: Effects of the nitric oxide donor, sodium nitroprusside, on resting leg glucose uptake in patients with type 2 diabetes. Diabetologia. 2005, 48: 2602-2608. 10.1007/s00125-005-0018-1.CrossRef Henstridge DC, Kingwell BA, Formosa MF, Drew BG, McConell GK, Duffy SJ: Effects of the nitric oxide donor, sodium nitroprusside, on resting leg glucose uptake in patients with type 2 diabetes. Diabetologia. 2005, 48: 2602-2608. 10.1007/s00125-005-0018-1.CrossRef
17.
go back to reference Pitkanen OP, Laine H, Kemppainen J, Eronen E, Alanen A, Raitakari M, Kirvela O, Ruotsalainen U, Knuuti J, Koivisto VA, Nuutila P: Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake. J Physiol. 1999, 521 (Pt 3): 729-737.CrossRef Pitkanen OP, Laine H, Kemppainen J, Eronen E, Alanen A, Raitakari M, Kirvela O, Ruotsalainen U, Knuuti J, Koivisto VA, Nuutila P: Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake. J Physiol. 1999, 521 (Pt 3): 729-737.CrossRef
18.
go back to reference Inyard AC, Clerk LH, Vincent MA, Barrett EJ: Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007, 56: 2194-2200. 10.2337/db07-0020.CrossRef Inyard AC, Clerk LH, Vincent MA, Barrett EJ: Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007, 56: 2194-2200. 10.2337/db07-0020.CrossRef
19.
go back to reference Kalliokoski KK, Langberg H, Ryberg AK, Scheede-Bergdahl C, Doessing S, Kjaer A, Kjaer M, Boushel R: Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow. Am J Physiol Regul Integr Comp Physiol. 2006, 291: R803-R809. 10.1152/ajpregu.00808.2005.CrossRef Kalliokoski KK, Langberg H, Ryberg AK, Scheede-Bergdahl C, Doessing S, Kjaer A, Kjaer M, Boushel R: Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow. Am J Physiol Regul Integr Comp Physiol. 2006, 291: R803-R809. 10.1152/ajpregu.00808.2005.CrossRef
20.
go back to reference Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH: Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res. 1998, 83: 969-979. 10.1161/01.RES.83.10.969.CrossRef Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH: Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res. 1998, 83: 969-979. 10.1161/01.RES.83.10.969.CrossRef
21.
go back to reference Recchia FA, McConnell PI, Loke KE, Xu X, Ochoa M, Hintze TH: Nitric oxide controls cardiac substrate utilization in the conscious dog. Cardiovasc Res. 1999, 44: 325-332. 10.1016/S0008-6363(99)00245-X.CrossRef Recchia FA, McConnell PI, Loke KE, Xu X, Ochoa M, Hintze TH: Nitric oxide controls cardiac substrate utilization in the conscious dog. Cardiovasc Res. 1999, 44: 325-332. 10.1016/S0008-6363(99)00245-X.CrossRef
22.
go back to reference Recchia FA, Osorio JC, Chandler MP, Xu X, Panchal AR, Lopaschuk GD, Hintze TH, Stanley WC: Reduced synthesis of NO causes marked alterations in myocardial substrate metabolism in conscious dogs. Am J Physiol Endocrinol Metab. 2002, 282: E197-E206. Recchia FA, Osorio JC, Chandler MP, Xu X, Panchal AR, Lopaschuk GD, Hintze TH, Stanley WC: Reduced synthesis of NO causes marked alterations in myocardial substrate metabolism in conscious dogs. Am J Physiol Endocrinol Metab. 2002, 282: E197-E206.
23.
go back to reference Tada H, Thompson CI, Recchia FA, Loke KE, Ochoa M, Smith CJ, Shesely EG, Kaley G, Hintze TH: Myocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in Langendorff mouse heart. Circ Res. 2000, 86: 270-274. 10.1161/01.RES.86.3.270.CrossRef Tada H, Thompson CI, Recchia FA, Loke KE, Ochoa M, Smith CJ, Shesely EG, Kaley G, Hintze TH: Myocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in Langendorff mouse heart. Circ Res. 2000, 86: 270-274. 10.1161/01.RES.86.3.270.CrossRef
24.
go back to reference Heinonen IH, Saltin B, Kemppainen J, Sipila H, Oikonen V, Nuutila P, Knuuti J, Kalliokoski KK, Hellsten Y: Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a PET study with nitric oxide and cyclooxygenase inhibition. Am J Physiol Heart Circ Physiol. 2011, 300: H1510-H1517. 10.1152/ajpheart.00996.2010.CrossRef Heinonen IH, Saltin B, Kemppainen J, Sipila H, Oikonen V, Nuutila P, Knuuti J, Kalliokoski KK, Hellsten Y: Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a PET study with nitric oxide and cyclooxygenase inhibition. Am J Physiol Heart Circ Physiol. 2011, 300: H1510-H1517. 10.1152/ajpheart.00996.2010.CrossRef
25.
go back to reference Lee-Young RS, Ayala JE, Hunley CF, James FD, Bracy DP, Kang L, Wasserman DH: Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R1399-R1408. 10.1152/ajpregu.00004.2010.CrossRef Lee-Young RS, Ayala JE, Hunley CF, James FD, Bracy DP, Kang L, Wasserman DH: Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R1399-R1408. 10.1152/ajpregu.00004.2010.CrossRef
26.
go back to reference Rottman JN, Bracy D, Malabanan C, Yue Z, Clanton J, Wasserman DH: Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice. Am J Physiol Endocrinol Metab. 2002, 283: E116-E123.CrossRef Rottman JN, Bracy D, Malabanan C, Yue Z, Clanton J, Wasserman DH: Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice. Am J Physiol Endocrinol Metab. 2002, 283: E116-E123.CrossRef
27.
go back to reference Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G: Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006, 17: 571-588. 10.1016/j.jnutbio.2005.12.001.CrossRef Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G: Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006, 17: 571-588. 10.1016/j.jnutbio.2005.12.001.CrossRef
28.
go back to reference Mortensen SP, Gonzalez-Alonso J, Damsgaard R, Saltin B, Hellsten Y: Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. J Physiol. 2007, 581: 853-861. 10.1113/jphysiol.2006.127423.CrossRef Mortensen SP, Gonzalez-Alonso J, Damsgaard R, Saltin B, Hellsten Y: Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. J Physiol. 2007, 581: 853-861. 10.1113/jphysiol.2006.127423.CrossRef
29.
go back to reference Sipilä HT, Clark JC, Peltola O, Teräs M: An automatic [15O]-H2O production system for heart and brain studies. J Label Compd Radiopharm. 2001, 44: S1066-S1068. 10.1002/jlcr.25804401381.CrossRef Sipilä HT, Clark JC, Peltola O, Teräs M: An automatic [15O]-H2O production system for heart and brain studies. J Label Compd Radiopharm. 2001, 44: S1066-S1068. 10.1002/jlcr.25804401381.CrossRef
30.
go back to reference Heinonen IH, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos M, Oikonen V, Nuutila P, Knuuti J, Boushel R, Kalliokoski KK: Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia. Am J Physiol Regul Integr Comp Physiol. 2010, 299: R72-R79. 10.1152/ajpregu.00056.2010.CrossRef Heinonen IH, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos M, Oikonen V, Nuutila P, Knuuti J, Boushel R, Kalliokoski KK: Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia. Am J Physiol Regul Integr Comp Physiol. 2010, 299: R72-R79. 10.1152/ajpregu.00056.2010.CrossRef
31.
go back to reference Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K: Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986, 6: 536-545. 10.1038/jcbfm.1986.99.CrossRef Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K: Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986, 6: 536-545. 10.1038/jcbfm.1986.99.CrossRef
32.
go back to reference Heinonen IH, Nesterov SV, Kemppainen JT, Nuutila P, Knuuti J, Laitio R, Kjaer M, Boushel R, Kalliokoski KK: Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans. J Appl Physiol. 2007, 103: 2042-2048. 10.1152/japplphysiol.00567.2007.CrossRef Heinonen IH, Nesterov SV, Kemppainen JT, Nuutila P, Knuuti J, Laitio R, Kjaer M, Boushel R, Kalliokoski KK: Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans. J Appl Physiol. 2007, 103: 2042-2048. 10.1152/japplphysiol.00567.2007.CrossRef
33.
go back to reference Ruotsalainen U, Raitakari M, Nuutila P, Oikonen V, Sipila H, Teras M, Knuuti MJ, Bloomfield PM, Iida H: Quantitative blood flow measurement of skeletal muscle using oxygen-15- water and PET. J Nucl Med. 1997, 38: 314-319. Ruotsalainen U, Raitakari M, Nuutila P, Oikonen V, Sipila H, Teras M, Knuuti MJ, Bloomfield PM, Iida H: Quantitative blood flow measurement of skeletal muscle using oxygen-15- water and PET. J Nucl Med. 1997, 38: 314-319.
34.
go back to reference Heinonen I, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos MM, Oikonen V, Nuutila P, Knuuti J, Hellsten Y, Boushel R, Kalliokoski KK: Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. J Appl Physiol. 2010, 108: 378-386. 10.1152/japplphysiol.00745.2009.CrossRef Heinonen I, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos MM, Oikonen V, Nuutila P, Knuuti J, Hellsten Y, Boushel R, Kalliokoski KK: Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. J Appl Physiol. 2010, 108: 378-386. 10.1152/japplphysiol.00745.2009.CrossRef
35.
go back to reference Copp SW, Hirai DM, Hageman KS, Poole DC, Musch TI: Nitric oxide synthase inhibition during treadmill exercise reveals fiber-type specific vascular control in the rat hindlimb. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R478-R485. 10.1152/ajpregu.00631.2009.CrossRef Copp SW, Hirai DM, Hageman KS, Poole DC, Musch TI: Nitric oxide synthase inhibition during treadmill exercise reveals fiber-type specific vascular control in the rat hindlimb. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R478-R485. 10.1152/ajpregu.00631.2009.CrossRef
36.
go back to reference Korvald C, Elvenes OP, Myrmel T: Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000, 278: H1345-H1351. Korvald C, Elvenes OP, Myrmel T: Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000, 278: H1345-H1351.
37.
go back to reference Mjos OD: Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest. 1971, 50: 1386-1389. 10.1172/JCI106621.CrossRef Mjos OD: Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest. 1971, 50: 1386-1389. 10.1172/JCI106621.CrossRef
38.
go back to reference Simonsen S, Kjekshus JK: The effect of free fatty acids on myocardial oxygen consumption during atrial pacing and catecholamine infusion in man. Circulation. 1978, 58: 484-491. 10.1161/01.CIR.58.3.484.CrossRef Simonsen S, Kjekshus JK: The effect of free fatty acids on myocardial oxygen consumption during atrial pacing and catecholamine infusion in man. Circulation. 1978, 58: 484-491. 10.1161/01.CIR.58.3.484.CrossRef
39.
go back to reference Suga H: Ventricular energetics. Physiol Rev. 1990, 70: 247-277. Suga H: Ventricular energetics. Physiol Rev. 1990, 70: 247-277.
40.
go back to reference Brown GC: Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001, 1504: 46-57. 10.1016/S0005-2728(00)00238-3.CrossRef Brown GC: Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001, 1504: 46-57. 10.1016/S0005-2728(00)00238-3.CrossRef
41.
go back to reference Cooper CE, Giulivi : Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. Am J Physiol Cell Physiol. 2007, 292: C1993-C2003. 10.1152/ajpcell.00310.2006.CrossRef Cooper CE, Giulivi : Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. Am J Physiol Cell Physiol. 2007, 292: C1993-C2003. 10.1152/ajpcell.00310.2006.CrossRef
42.
go back to reference Erusalimsky JD, Moncada S: Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol. 2007, 27: 2524-2531. 10.1161/ATVBAHA.107.151167.CrossRef Erusalimsky JD, Moncada S: Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol. 2007, 27: 2524-2531. 10.1161/ATVBAHA.107.151167.CrossRef
43.
go back to reference Andersson K, Gaudiot N, Ribiere C, Elizalde M, Giudicelli Y, Arner P: A nitric oxide-mediated mechanism regulates lipolysis in human adipose tissue in vivo. Br J Pharmacol. 1999, 126: 1639-1645. 10.1038/sj.bjp.0702430.CrossRef Andersson K, Gaudiot N, Ribiere C, Elizalde M, Giudicelli Y, Arner P: A nitric oxide-mediated mechanism regulates lipolysis in human adipose tissue in vivo. Br J Pharmacol. 1999, 126: 1639-1645. 10.1038/sj.bjp.0702430.CrossRef
44.
go back to reference Ribiere C, Jaubert AM, Gaudiot N, Sabourault D, Marcus ML, Boucher JL, Denis-Henriot D, Giudicelli Y: White adipose tissue nitric oxide synthase: a potential source for NO production. Biochem Biophys Res Commun. 1996, 222: 706-712. 10.1006/bbrc.1996.0824.CrossRef Ribiere C, Jaubert AM, Gaudiot N, Sabourault D, Marcus ML, Boucher JL, Denis-Henriot D, Giudicelli Y: White adipose tissue nitric oxide synthase: a potential source for NO production. Biochem Biophys Res Commun. 1996, 222: 706-712. 10.1006/bbrc.1996.0824.CrossRef
45.
go back to reference Radegran G, Saltin B: Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol. 1999, 276: H1951-H1960. Radegran G, Saltin B: Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol. 1999, 276: H1951-H1960.
46.
go back to reference Frandsenn U, Bangsbo J, Sander M, Hoffner L, Betak A, Saltin B, Hellsten Y: Exercise-induced hyperaemia and leg oxygen uptake are not altered during effective inhibition of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester in humans. J Physiol. 2001, 531: 257-264. 10.1111/j.1469-7793.2001.0257j.x.CrossRef Frandsenn U, Bangsbo J, Sander M, Hoffner L, Betak A, Saltin B, Hellsten Y: Exercise-induced hyperaemia and leg oxygen uptake are not altered during effective inhibition of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester in humans. J Physiol. 2001, 531: 257-264. 10.1111/j.1469-7793.2001.0257j.x.CrossRef
Metadata
Title
Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle
Authors
Ilkka Heinonen
Bengt Saltin
Jukka Kemppainen
Pirjo Nuutila
Juhani Knuuti
Kari Kalliokoski
Ylva Hellsten
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2013
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-10-43

Other articles of this Issue 1/2013

Nutrition & Metabolism 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine