Skip to main content
Top
Published in: Sports Medicine 2/2018

01-02-2018 | Review Article

Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis

Authors: Florie Maillard, Bruno Pereira, Nathalie Boisseau

Published in: Sports Medicine | Issue 2/2018

Login to get access

Abstract

Background

High-intensity interval training (HIIT) is promoted as a time-efficient strategy to improve body composition.

Objective

The aim of this meta-analysis was to assess the efficacy of HIIT in reducing total, abdominal, and visceral fat mass in normal-weight and overweight/obese adults.

Methods

Electronic databases were searched to identify all related articles on HIIT and fat mass. Stratified analysis was performed using the nature of HIIT (cycling versus running, target intensity), sex and/or body weight, and the methods of measuring body composition. Heterogeneity was also determined

Results

A total of 39 studies involving 617 subjects were included (mean age 38.8 years ± 14.4, 52% females). HIIT significantly reduced total (p = 0.003), abdominal (p = 0.007), and visceral (p = 0.018) fat mass, with no differences between the sexes. A comparison showed that running was more effective than cycling in reducing total and visceral fat mass. High-intensity (above 90% peak heart rate) training was more successful in reducing whole body adiposity, while lower intensities had a greater effect on changes in abdominal and visceral fat mass. Our analysis also indicated that only computed tomography scan or magnetic resonance imaging showed significant abdominal and/or visceral fat-mass loss after HIIT interventions.

Conclusion

HIIT is a time-efficient strategy to decrease fat-mass deposits, including those of abdominal and visceral fat mass. There was some evidence of the greater effectiveness of HIIT running versus cycling, but owing to the wide variety of protocols used and the lack of full details about cycling training, further comparisons need to be made. Large, multicenter, prospective studies are required to establish the best HIIT protocols for reducing fat mass according to subject characteristics.
Literature
1.
go back to reference Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384:766–81.CrossRefPubMedPubMedCentral Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384:766–81.CrossRefPubMedPubMedCentral
2.
go back to reference Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech Rep Ser. 2000;894:i–xii, 1–253. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech Rep Ser. 2000;894:i–xii, 1–253.
3.
go back to reference Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21:697–738.CrossRefPubMed Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21:697–738.CrossRefPubMed
4.
go back to reference Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol Oxf. 2012;205:194–208.CrossRefPubMed Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol Oxf. 2012;205:194–208.CrossRefPubMed
5.
6.
go back to reference Johns DJ, Hartmann-Boyce J, Jebb SA, et al. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet. 2014;114:1557–68.CrossRefPubMedPubMedCentral Johns DJ, Hartmann-Boyce J, Jebb SA, et al. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet. 2014;114:1557–68.CrossRefPubMedPubMedCentral
7.
go back to reference Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.CrossRefPubMed Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.CrossRefPubMed
8.
go back to reference Lazzer S, Tringali G, Caccavale M, et al. Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents. J Endocrinol Investig. 2017;40:217–26.CrossRef Lazzer S, Tringali G, Caccavale M, et al. Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents. J Endocrinol Investig. 2017;40:217–26.CrossRef
9.
go back to reference Maurie J, Brun J, Jean E, et al. Comparaison de deux modalités différentes d’activité physique (SWEET et Lipoxmax) chez des diabétiques de type 2. Sci Sports. 2011;26:92–6.CrossRef Maurie J, Brun J, Jean E, et al. Comparaison de deux modalités différentes d’activité physique (SWEET et Lipoxmax) chez des diabétiques de type 2. Sci Sports. 2011;26:92–6.CrossRef
10.
go back to reference Shaw K, Gennat H, O’Rourke P, et al. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4:CD003817. Shaw K, Gennat H, O’Rourke P, et al. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4:CD003817.
11.
go back to reference Wu T, Gao X, Chen M, et al. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis. Obes Rev. 2009;10:313–23.CrossRefPubMed Wu T, Gao X, Chen M, et al. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis. Obes Rev. 2009;10:313–23.CrossRefPubMed
12.
13.
go back to reference Keating SE, Johnson NA, Mielke GI, et al. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18(8):943–64.CrossRefPubMed Keating SE, Johnson NA, Mielke GI, et al. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18(8):943–64.CrossRefPubMed
14.
go back to reference Wewege M, Van den berg R, Ward RE, et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18:635–46.CrossRefPubMed Wewege M, Van den berg R, Ward RE, et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18:635–46.CrossRefPubMed
15.
go back to reference Trapp EG, Chisholm DJ, Freund J, et al. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes. 2005;2008(32):684–91. Trapp EG, Chisholm DJ, Freund J, et al. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes. 2005;2008(32):684–91.
16.
go back to reference Maillard F, Rousset S, Pereira B, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42:433–41.CrossRefPubMed Maillard F, Rousset S, Pereira B, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42:433–41.CrossRefPubMed
17.
go back to reference Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–34.CrossRefPubMed Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–34.CrossRefPubMed
18.
go back to reference Azuma K, Matsumoto H. Potential universal application of high-intensity interval training from athletes and sports lovers to patients. Keio J Med. 2017;66:19–24.CrossRefPubMed Azuma K, Matsumoto H. Potential universal application of high-intensity interval training from athletes and sports lovers to patients. Keio J Med. 2017;66:19–24.CrossRefPubMed
19.
go back to reference Granata C, Oliveira RSF, Little JP, et al. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016;30:959–70.CrossRefPubMed Granata C, Oliveira RSF, Little JP, et al. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016;30:959–70.CrossRefPubMed
20.
go back to reference MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595:2915–30.CrossRefPubMed MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595:2915–30.CrossRefPubMed
21.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1998. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1998.
22.
go back to reference Gillen JB, Percival ME, Ludzki A, et al. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obes Silver Spring. 2013;21:2249–55.CrossRef Gillen JB, Percival ME, Ludzki A, et al. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obes Silver Spring. 2013;21:2249–55.CrossRef
23.
go back to reference Hutchison SK, Stepto NK, Harrison CL, et al. Effects of exercise on insulin resistance and body composition in overweight and obese women with and without polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96:E48–56.CrossRefPubMed Hutchison SK, Stepto NK, Harrison CL, et al. Effects of exercise on insulin resistance and body composition in overweight and obese women with and without polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96:E48–56.CrossRefPubMed
24.
go back to reference Fex A, Leduc-Gaudet J-P, Filion M-E, et al. Effect of elliptical high intensity interval training on metabolic risk factor in pre and type 2 diabetes patients a pilot study. J Phys Act Health. 2015;12:942–6.CrossRefPubMed Fex A, Leduc-Gaudet J-P, Filion M-E, et al. Effect of elliptical high intensity interval training on metabolic risk factor in pre and type 2 diabetes patients a pilot study. J Phys Act Health. 2015;12:942–6.CrossRefPubMed
25.
go back to reference Sawyer BJ, Tucker WJ, Bhammar DM, et al. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol. 1985;2016(121):279–88. Sawyer BJ, Tucker WJ, Bhammar DM, et al. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol. 1985;2016(121):279–88.
26.
go back to reference Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42:489–509.CrossRefPubMed Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42:489–509.CrossRefPubMed
27.
go back to reference Gibala MJ, Jones AM. Physiological and performance adaptations to high-intensity interval training. Nestle Nutr Inst Workshop Ser. 2013;76:51–60.CrossRefPubMed Gibala MJ, Jones AM. Physiological and performance adaptations to high-intensity interval training. Nestle Nutr Inst Workshop Ser. 2013;76:51–60.CrossRefPubMed
28.
go back to reference Ribeiro RL, de Oliveira Ítalo, Silva J, Dantas M, et al. High-intensity interval training applied in Brazilian Jiu-jitsu is more effective to improve athletic performance and body composition. J Combat Sports Martial Arts. 2015;6:1–5.CrossRef Ribeiro RL, de Oliveira Ítalo, Silva J, Dantas M, et al. High-intensity interval training applied in Brazilian Jiu-jitsu is more effective to improve athletic performance and body composition. J Combat Sports Martial Arts. 2015;6:1–5.CrossRef
29.
go back to reference Drenowatz C, Hand GA, Sagner M, et al. The prospective association between different types of exercise and body composition. Med Sci Sports Exerc. 2015;47:2535–41.CrossRefPubMedPubMedCentral Drenowatz C, Hand GA, Sagner M, et al. The prospective association between different types of exercise and body composition. Med Sci Sports Exerc. 2015;47:2535–41.CrossRefPubMedPubMedCentral
30.
go back to reference Verheggen RJHM, Maessen MFH, Green DJ, et al. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17:664–90.CrossRefPubMed Verheggen RJHM, Maessen MFH, Green DJ, et al. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17:664–90.CrossRefPubMed
31.
go back to reference Terada T, Friesen A, Chahal BS, et al. Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res Clin Pract. 2013;99:120–9.CrossRefPubMed Terada T, Friesen A, Chahal BS, et al. Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res Clin Pract. 2013;99:120–9.CrossRefPubMed
32.
go back to reference Capostagno B, Bosch A. Higher fat oxidation in running than cycling at the same exercise intensities. Int J Sport Nutr Exerc Metab. 2010;20:44–55.CrossRefPubMed Capostagno B, Bosch A. Higher fat oxidation in running than cycling at the same exercise intensities. Int J Sport Nutr Exerc Metab. 2010;20:44–55.CrossRefPubMed
33.
go back to reference Knechtle B, Müller G, Willmann F, et al. Fat oxidation in men and women endurance athletes in running and cycling. Int J Sports Med. 2004;25:38–44.CrossRefPubMed Knechtle B, Müller G, Willmann F, et al. Fat oxidation in men and women endurance athletes in running and cycling. Int J Sports Med. 2004;25:38–44.CrossRefPubMed
34.
go back to reference Cunha FA, Midgley AW, McNaughton LR, et al. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption. J Sci Med Sport. 2016;19:187–92.CrossRefPubMed Cunha FA, Midgley AW, McNaughton LR, et al. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption. J Sci Med Sport. 2016;19:187–92.CrossRefPubMed
35.
go back to reference Zouhal H, Jacob C, Delamarche P, et al. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38:401–23.CrossRefPubMed Zouhal H, Jacob C, Delamarche P, et al. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38:401–23.CrossRefPubMed
36.
go back to reference Rebuffé-Scrive M, Andersson B, Olbe L, et al. Metabolism of adipose tissue in intraabdominal depots of nonobese men and women. Metabolism. 1989;38:453–8.CrossRefPubMed Rebuffé-Scrive M, Andersson B, Olbe L, et al. Metabolism of adipose tissue in intraabdominal depots of nonobese men and women. Metabolism. 1989;38:453–8.CrossRefPubMed
37.
go back to reference Davies CT, Few J, Foster KG, et al. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol. 1974;32:195–206.CrossRef Davies CT, Few J, Foster KG, et al. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol. 1974;32:195–206.CrossRef
38.
go back to reference Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol. 1985;1998(84):1252–9. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol. 1985;1998(84):1252–9.
39.
go back to reference Vissers D, Hens W, Taeymans J, et al. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PloS One. 2013;8:e56415.CrossRefPubMedPubMedCentral Vissers D, Hens W, Taeymans J, et al. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PloS One. 2013;8:e56415.CrossRefPubMedPubMedCentral
40.
go back to reference Morikawa M, Okazaki K, Masuki S, et al. Physical fitness and indices of lifestyle-related diseases before and after interval walking training in middle-aged and older males and females. Br J Sports Med. 2011;45:216–24.CrossRefPubMed Morikawa M, Okazaki K, Masuki S, et al. Physical fitness and indices of lifestyle-related diseases before and after interval walking training in middle-aged and older males and females. Br J Sports Med. 2011;45:216–24.CrossRefPubMed
41.
go back to reference Shuster A, Patlas M, Pinthus JH, et al. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10.CrossRefPubMedPubMedCentral Shuster A, Patlas M, Pinthus JH, et al. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10.CrossRefPubMedPubMedCentral
42.
go back to reference Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927–54.CrossRefPubMed Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927–54.CrossRefPubMed
43.
go back to reference Gosselin LE, Kozlowski KF, DeVinney-Boymel L, et al. Metabolic response of different high-intensity aerobic interval exercise protocols. J Strength Cond Res. 2012;26:2866–71.CrossRefPubMed Gosselin LE, Kozlowski KF, DeVinney-Boymel L, et al. Metabolic response of different high-intensity aerobic interval exercise protocols. J Strength Cond Res. 2012;26:2866–71.CrossRefPubMed
44.
go back to reference Bryner RW, Toffle RC, Ullrich IH, et al. The effects of exercise intensity on body composition, weight loss, and dietary composition in women. J Am Coll Nutr. 1997;16:68–73.CrossRefPubMed Bryner RW, Toffle RC, Ullrich IH, et al. The effects of exercise intensity on body composition, weight loss, and dietary composition in women. J Am Coll Nutr. 1997;16:68–73.CrossRefPubMed
45.
go back to reference Lee M-G, Park K-S, Kim D-U, et al. Effects of high-intensity exercise training on body composition, abdominal fat loss, and cardiorespiratory fitness in middle-aged Korean females. Appl Physiol Nutr Metab. 2012;37:1019–27.CrossRefPubMed Lee M-G, Park K-S, Kim D-U, et al. Effects of high-intensity exercise training on body composition, abdominal fat loss, and cardiorespiratory fitness in middle-aged Korean females. Appl Physiol Nutr Metab. 2012;37:1019–27.CrossRefPubMed
46.
go back to reference Ahmadizad S, Avansar AS, Ebrahim K, et al. The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Horm Mol Biol Clin Investig. 2015;21:165–73.PubMed Ahmadizad S, Avansar AS, Ebrahim K, et al. The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Horm Mol Biol Clin Investig. 2015;21:165–73.PubMed
47.
go back to reference Almenning I, Rieber-Mohn A, Lundgren KM, et al. Effects of high intensity interval training and strength training on metabolic, cardiovascular and hormonal outcomes in women with polycystic ovary syndrome: apilot study. PloS One. 2015;10:e0138793.CrossRefPubMedPubMedCentral Almenning I, Rieber-Mohn A, Lundgren KM, et al. Effects of high intensity interval training and strength training on metabolic, cardiovascular and hormonal outcomes in women with polycystic ovary syndrome: apilot study. PloS One. 2015;10:e0138793.CrossRefPubMedPubMedCentral
48.
go back to reference Arad AD, DiMenna FJ, Thomas N, et al. High-intensity interval training without weight loss improves exercise but not basal or insulin-induced metabolism in overweight/obese African American women. J Appl Physiol. 1985;2015(119):352–62. Arad AD, DiMenna FJ, Thomas N, et al. High-intensity interval training without weight loss improves exercise but not basal or insulin-induced metabolism in overweight/obese African American women. J Appl Physiol. 1985;2015(119):352–62.
49.
go back to reference Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59:56–66.CrossRefPubMed Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59:56–66.CrossRefPubMed
50.
go back to reference Coquart JBJ, Lemaire C, Dubart A-E, et al. Intermittent versus continuous exercise: effects of perceptually lower exercise in obese women. Med Sci Sports Exerc. 2008;40:1546–53.CrossRefPubMed Coquart JBJ, Lemaire C, Dubart A-E, et al. Intermittent versus continuous exercise: effects of perceptually lower exercise in obese women. Med Sci Sports Exerc. 2008;40:1546–53.CrossRefPubMed
51.
go back to reference Eimarieskandari R, Zilaeibouri S, Zilaeibouri M, et al. Comparing two modes of exercise training with different intensity on body composition in obese young girls. Sci Mov Health. 2012;12:473–8. Eimarieskandari R, Zilaeibouri S, Zilaeibouri M, et al. Comparing two modes of exercise training with different intensity on body composition in obese young girls. Sci Mov Health. 2012;12:473–8.
52.
go back to reference Fisher G, Brown AW, Bohan Brown MM, et al. High intensity interval vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PloS One. 2015;10:e0138853.CrossRefPubMedPubMedCentral Fisher G, Brown AW, Bohan Brown MM, et al. High intensity interval vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PloS One. 2015;10:e0138853.CrossRefPubMedPubMedCentral
53.
go back to reference Gahreman D, Heydari M, Boutcher Y, et al. The effect of green tea ingestion and interval sprinting exercise on the body composition of overweight males: a randomized trial. Nutrients. 2016;8:510.CrossRefPubMedCentral Gahreman D, Heydari M, Boutcher Y, et al. The effect of green tea ingestion and interval sprinting exercise on the body composition of overweight males: a randomized trial. Nutrients. 2016;8:510.CrossRefPubMedCentral
55.
go back to reference Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci Lond. 2015;129:1097–105.CrossRefPubMed Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci Lond. 2015;129:1097–105.CrossRefPubMed
56.
go back to reference Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:480467.CrossRefPubMedPubMedCentral Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:480467.CrossRefPubMedPubMedCentral
57.
go back to reference Hornbuckle LM, McKenzie MJ, Whitt-Glover MC. Effects of high-intensity interval training on cardiometabolic risk in overweight and obese African–American women: a pilot study. Ethn Health. 2017;1:1–15. Hornbuckle LM, McKenzie MJ, Whitt-Glover MC. Effects of high-intensity interval training on cardiometabolic risk in overweight and obese African–American women: a pilot study. Ethn Health. 2017;1:1–15.
58.
go back to reference Hwang C-L, Yoo J-K, Kim H-K, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.CrossRefPubMedPubMedCentral Hwang C-L, Yoo J-K, Kim H-K, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.CrossRefPubMedPubMedCentral
59.
go back to reference Karstoft K, Winding K, Knudsen SH, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2013;36:228–36.CrossRefPubMedPubMedCentral Karstoft K, Winding K, Knudsen SH, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2013;36:228–36.CrossRefPubMedPubMedCentral
60.
go back to reference Kong Z, Sun S, Liu M, et al. Short-term high-intensity interval training on body composition and blood glucose in overweight and obese young women. J Diabetes Res. 2016;2016:4073618.CrossRefPubMedPubMedCentral Kong Z, Sun S, Liu M, et al. Short-term high-intensity interval training on body composition and blood glucose in overweight and obese young women. J Diabetes Res. 2016;2016:4073618.CrossRefPubMedPubMedCentral
61.
go back to reference Martins C, Kazakova I, Ludviksen M, et al. High-intensity interval training and isocaloric moderate-intensity continuous training result in similar improvements in body composition and fitness in obese individuals. Int J Sport Nutr Exerc Metab. 2016;26:197–204.CrossRefPubMed Martins C, Kazakova I, Ludviksen M, et al. High-intensity interval training and isocaloric moderate-intensity continuous training result in similar improvements in body composition and fitness in obese individuals. Int J Sport Nutr Exerc Metab. 2016;26:197–204.CrossRefPubMed
62.
go back to reference Matinhomaee H, Banaei J, Azarbayjani MA, et al. Effects of 12-week high-intensity interval training on plasma visfatin concentration and insulin resistance in overweight men. J Exerc Sci Fit. 2014;12:20–5.CrossRef Matinhomaee H, Banaei J, Azarbayjani MA, et al. Effects of 12-week high-intensity interval training on plasma visfatin concentration and insulin resistance in overweight men. J Exerc Sci Fit. 2014;12:20–5.CrossRef
63.
go back to reference Nikseresht M, Agha-Alinejad H, Azarbayjani MA, et al. Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. J Strength Cond Res. 2014;28:2560–8.CrossRefPubMed Nikseresht M, Agha-Alinejad H, Azarbayjani MA, et al. Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. J Strength Cond Res. 2014;28:2560–8.CrossRefPubMed
64.
go back to reference Panissa VLG, Julio UF, França V, et al. Sex-related differences in self-paced all out high-intensity intermittent cycling: mechanical and physiological responses. J Sports Sci Med. 2016;15:372–8.PubMedPubMedCentral Panissa VLG, Julio UF, França V, et al. Sex-related differences in self-paced all out high-intensity intermittent cycling: mechanical and physiological responses. J Sports Sci Med. 2016;15:372–8.PubMedPubMedCentral
65.
go back to reference Ramos JS, Dalleck LC, Borrani F, et al. The effect of different volumes of high-intensity interval training on proinsulin in participants with the metabolic syndrome: a randomised trial. Diabetologia. 2016;59:2308–20.CrossRefPubMed Ramos JS, Dalleck LC, Borrani F, et al. The effect of different volumes of high-intensity interval training on proinsulin in participants with the metabolic syndrome: a randomised trial. Diabetologia. 2016;59:2308–20.CrossRefPubMed
66.
go back to reference Sandstad J, Stensvold D, Hoff M, et al. The effects of high intensity interval training in women with rheumatic disease: a pilot study. Eur J Appl Physiol. 2015;115:2081–9.CrossRefPubMed Sandstad J, Stensvold D, Hoff M, et al. The effects of high intensity interval training in women with rheumatic disease: a pilot study. Eur J Appl Physiol. 2015;115:2081–9.CrossRefPubMed
67.
go back to reference Sasaki H, Morishima T, Hasegawa Y, et al. 4 weeks of high-intensity interval training does not alter the exercise-induced growth hormone response in sedentary men. SpringerPlus. 2014;3:336.CrossRefPubMedPubMedCentral Sasaki H, Morishima T, Hasegawa Y, et al. 4 weeks of high-intensity interval training does not alter the exercise-induced growth hormone response in sedentary men. SpringerPlus. 2014;3:336.CrossRefPubMedPubMedCentral
68.
go back to reference Schjerve IE, Tyldum GA, Tjønna AE, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (Lond). 1979;2008(115):283–93. Schjerve IE, Tyldum GA, Tjønna AE, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (Lond). 1979;2008(115):283–93.
69.
go back to reference Shepherd SO, Wilson OJ, Taylor AS, et al. Low-volume high-intensity interval training in a gym setting improves cardio-metabolic and psychological health. PloS One. 2015;10:e0139056.CrossRefPubMedPubMedCentral Shepherd SO, Wilson OJ, Taylor AS, et al. Low-volume high-intensity interval training in a gym setting improves cardio-metabolic and psychological health. PloS One. 2015;10:e0139056.CrossRefPubMedPubMedCentral
70.
go back to reference Smith-Ryan AE, Melvin MN, Wingfield HL. High-intensity interval training: modulating interval duration in overweight/obese men. Phys Sports Med. 2015;43:107–13.CrossRef Smith-Ryan AE, Melvin MN, Wingfield HL. High-intensity interval training: modulating interval duration in overweight/obese men. Phys Sports Med. 2015;43:107–13.CrossRef
71.
go back to reference Steckling FM, Farinha JB, Santos DLD, et al. High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. Exp Clin Endocrinol Diabetes Off. 2016;124:597–601.CrossRef Steckling FM, Farinha JB, Santos DLD, et al. High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. Exp Clin Endocrinol Diabetes Off. 2016;124:597–601.CrossRef
72.
go back to reference Stensvold D, Tjønna AE, Skaug E-A, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol. 1985;2010(108):804–10. Stensvold D, Tjønna AE, Skaug E-A, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol. 1985;2010(108):804–10.
73.
go back to reference Tjønna AE, Leinan IM, Bartnes AT, et al. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PloS One. 2013;8:e65382.CrossRefPubMedPubMedCentral Tjønna AE, Leinan IM, Bartnes AT, et al. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PloS One. 2013;8:e65382.CrossRefPubMedPubMedCentral
74.
go back to reference Wallman K, Plant LA, Rakimov B, et al. The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Sports Med. 2009;17:156–70. Wallman K, Plant LA, Rakimov B, et al. The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Sports Med. 2009;17:156–70.
75.
go back to reference Zhang H, Tong TK, Qiu W, et al. Effect of high-intensity interval training protocol on abdominal fat reduction in overweight Chinese women: a randomized controlled trial. Kinesiology. 2015;47:57–66. Zhang H, Tong TK, Qiu W, et al. Effect of high-intensity interval training protocol on abdominal fat reduction in overweight Chinese women: a randomized controlled trial. Kinesiology. 2015;47:57–66.
76.
go back to reference Zhang H, Tong TK, Qiu W, et al. Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diabetes Res. 2017;2017:5071740.PubMedPubMedCentral Zhang H, Tong TK, Qiu W, et al. Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diabetes Res. 2017;2017:5071740.PubMedPubMedCentral
77.
go back to reference Ziemann E, Grzywacz T, Łuszczyk M, et al. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25:1104–12.CrossRefPubMed Ziemann E, Grzywacz T, Łuszczyk M, et al. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25:1104–12.CrossRefPubMed
Metadata
Title
Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis
Authors
Florie Maillard
Bruno Pereira
Nathalie Boisseau
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 2/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0807-y

Other articles of this Issue 2/2018

Sports Medicine 2/2018 Go to the issue