Skip to main content
Top
Published in: Annals of Intensive Care 1/2016

Open Access 01-12-2016 | Research

Effect of high-frequency oscillatory ventilation on esophageal and transpulmonary pressures in moderate-to-severe acute respiratory distress syndrome

Authors: Christophe Guervilly, Jean-Marie Forel, Sami Hraiech, Antoine Roch, Daniel Talmor, Laurent Papazian

Published in: Annals of Intensive Care | Issue 1/2016

Login to get access

Abstract

Background

High-frequency oscillatory ventilation (HFOV) has not been shown to be beneficial in the management of moderate-to-severe acute respiratory distress syndrome (ARDS). There is uncertainty about the actual pressure applied into the lung during HFOV. We therefore performed a study to compare the transpulmonary pressure (P L) during conventional mechanical ventilation (CMV) and different levels of mean airway pressure (mPaw) during HFOV.

Methods

This is a prospective randomized crossover study in a university teaching hospital. An esophageal balloon catheter was used to measure esophageal pressures (Pes) at end inspiration and end expiration and to calculate P L. Measurements were taken during ventilation with CMV (CMVpre) after which patients were switched to HFOV with three 1-h different levels of mPaw set at +5, +10 and +15 cm H2O above the mean airway pressure measured during CMV. Patients were thereafter switched back to CMV (CMVpost).

Results

Ten patients with moderate-to-severe ARDS were included. We demonstrated a linear increase in Pes and P L with the increase in mPaw during HFOV. Contrary to CMV, P L was always positive during HFOV whatever the level of mPaw applied but not associated with improvement in oxygenation. We found significant correlations between mPaw and Pes.

Conclusion

HFOV with high level of mPaw increases transpulmonary pressures without improvement in oxygenation.
Literature
1.
go back to reference ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.
2.
go back to reference Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–08. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–08.
3.
go back to reference Hager DN, Fuld M, Kaczka DW, Fessler HE, Brower RG, Simon BA. Four methods of measuring tidal volume during high-frequency oscillatory ventilation. Crit Care Med. 2006;34:751–7.CrossRefPubMed Hager DN, Fuld M, Kaczka DW, Fessler HE, Brower RG, Simon BA. Four methods of measuring tidal volume during high-frequency oscillatory ventilation. Crit Care Med. 2006;34:751–7.CrossRefPubMed
4.
go back to reference McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis. 1988;137:1185–92.CrossRefPubMed McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis. 1988;137:1185–92.CrossRefPubMed
5.
go back to reference Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–13.CrossRefPubMed Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–13.CrossRefPubMed
6.
go back to reference Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805.CrossRefPubMed Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805.CrossRefPubMed
7.
go back to reference Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, et al. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med. 2012;40:1539–45.CrossRefPubMed Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, et al. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med. 2012;40:1539–45.CrossRefPubMed
8.
go back to reference Ursulet L, Roussiaux A, Belcour D, Ferdynus C, Gauzere BA, Vandroux D, et al. Right over left ventricular end-diastolic area relevance to predict hemodynamic intolerance of high-frequency oscillatory ventilation in patients with severe ARDS. Ann Intensive Care. 2015;5:25. doi:10.1186/s13613-015-0068-6.CrossRefPubMedPubMedCentral Ursulet L, Roussiaux A, Belcour D, Ferdynus C, Gauzere BA, Vandroux D, et al. Right over left ventricular end-diastolic area relevance to predict hemodynamic intolerance of high-frequency oscillatory ventilation in patients with severe ARDS. Ann Intensive Care. 2015;5:25. doi:10.​1186/​s13613-015-0068-6.CrossRefPubMedPubMedCentral
9.
go back to reference Dreyfuss D, Ricard JD, Gaudry S. Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago. Intensive Care Med. 2015;41:2076–786.CrossRefPubMed Dreyfuss D, Ricard JD, Gaudry S. Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago. Intensive Care Med. 2015;41:2076–786.CrossRefPubMed
10.
go back to reference Hirayama T, Nagano O, Shiba N, Yumoto T, Sato K, Terado M, et al. Mean lung pressure during adult high-frequency oscillatory ventilation: an experimental study using a lung model. Acta Med Okayama. 2014;68:323–9.PubMed Hirayama T, Nagano O, Shiba N, Yumoto T, Sato K, Terado M, et al. Mean lung pressure during adult high-frequency oscillatory ventilation: an experimental study using a lung model. Acta Med Okayama. 2014;68:323–9.PubMed
11.
go back to reference Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–104.CrossRefPubMedPubMedCentral Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–104.CrossRefPubMedPubMedCentral
12.
go back to reference Henderson WR, Dominelli PB, Griesdale DE, Talmor D, Sheel AW. Airway pressure and transpulmonary pressure during high-frequency oscillation for acute respiratory distress syndrome. Can Respir J. 2014;21:107–11.CrossRefPubMedPubMedCentral Henderson WR, Dominelli PB, Griesdale DE, Talmor D, Sheel AW. Airway pressure and transpulmonary pressure during high-frequency oscillation for acute respiratory distress syndrome. Can Respir J. 2014;21:107–11.CrossRefPubMedPubMedCentral
13.
go back to reference Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–3116.CrossRefPubMed Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–3116.CrossRefPubMed
14.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed
15.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMed Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMed
16.
go back to reference Ferguson ND, Chiche JD, Kacmarek RM, Hallett DC, Mehta S, Findlay GP, et al. Combining high-frequency oscillatory ventilation and recruitment maneuvers in adults with early acute respiratory distress syndrome: the Treatment with Oscillation and an Open Lung Strategy (TOOLS) Trial pilot study. Crit Care Med. 2005;33:479–86.CrossRefPubMed Ferguson ND, Chiche JD, Kacmarek RM, Hallett DC, Mehta S, Findlay GP, et al. Combining high-frequency oscillatory ventilation and recruitment maneuvers in adults with early acute respiratory distress syndrome: the Treatment with Oscillation and an Open Lung Strategy (TOOLS) Trial pilot study. Crit Care Med. 2005;33:479–86.CrossRefPubMed
17.
go back to reference Higgs BD, Behrakis PK, Bevan DR, Milic-Emili J. Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology. 1983;59:340–3.CrossRefPubMed Higgs BD, Behrakis PK, Bevan DR, Milic-Emili J. Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology. 1983;59:340–3.CrossRefPubMed
18.
go back to reference Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, et al. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure: a propensity score analysis. Am J Respir Crit Care Med. 2016;193:495–503. doi:10.1164/rccm.201507-1381OC.CrossRefPubMed Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, et al. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure: a propensity score analysis. Am J Respir Crit Care Med. 2016;193:495–503. doi:10.​1164/​rccm.​201507-1381OC.CrossRefPubMed
19.
go back to reference Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166:801–8.CrossRefPubMed Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166:801–8.CrossRefPubMed
20.
go back to reference Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55. doi:10.1164/rccm.200710-1589OC.CrossRefPubMed Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55. doi:10.​1164/​rccm.​200710-1589OC.CrossRefPubMed
22.
go back to reference Knowles JH, Hong SK, Rahn H. Possible errors using esophageal balloon in determination of pressure-volume characteristics of the lung and thoracic cage. J Appl Physiol. 1959;14:525–30. Knowles JH, Hong SK, Rahn H. Possible errors using esophageal balloon in determination of pressure-volume characteristics of the lung and thoracic cage. J Appl Physiol. 1959;14:525–30.
23.
go back to reference Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8:350–855.CrossRefPubMedPubMedCentral Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8:350–855.CrossRefPubMedPubMedCentral
24.
go back to reference Gulati G, Novero A, Loring SH, Talmor D. Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elastance: incompatible results. Crit Care Med. 2013;41:1951–7.CrossRefPubMed Gulati G, Novero A, Loring SH, Talmor D. Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elastance: incompatible results. Crit Care Med. 2013;41:1951–7.CrossRefPubMed
25.
go back to reference Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–30.CrossRefPubMed Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–30.CrossRefPubMed
26.
go back to reference Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, et al. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40:1670–8.CrossRefPubMed Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, et al. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40:1670–8.CrossRefPubMed
28.
go back to reference Mojoli F, Chiumello D, Pozzi M, Algieri I, Bianzina S, Luoni S, et al. Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol. 2015;81:855–64.PubMed Mojoli F, Chiumello D, Pozzi M, Algieri I, Bianzina S, Luoni S, et al. Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol. 2015;81:855–64.PubMed
Metadata
Title
Effect of high-frequency oscillatory ventilation on esophageal and transpulmonary pressures in moderate-to-severe acute respiratory distress syndrome
Authors
Christophe Guervilly
Jean-Marie Forel
Sami Hraiech
Antoine Roch
Daniel Talmor
Laurent Papazian
Publication date
01-12-2016
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2016
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-016-0181-1

Other articles of this Issue 1/2016

Annals of Intensive Care 1/2016 Go to the issue