Skip to main content
Top
Published in: Clinical Oral Investigations 3/2012

01-06-2012 | Original Article

Effect of coating Straumann® Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation

Authors: Krzysztof Marek Mrozik, Stan Gronthos, Danijela Menicanin, Victor Marino, P. Mark Bartold

Published in: Clinical Oral Investigations | Issue 3/2012

Login to get access

Abstract

Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann® Bone Ceramic coated with Straumann® Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared not to induce ectopic bone formation, longer-term studies are required to determine whether it promotes the final stages of osteoblast formation and mineralization at gene and protein levels. While used in clinical applications, whether Emdogain and other commercial preparations of EMPs truly possess the capacity to induce the regeneration of bone or other components of the periodontium remains to be established.
Literature
2.
go back to reference Dereka XE, Markopoulou CE, Vrotsos IA (2006) Role of growth factors on periodontal repair. Growth Factors 24:260–267PubMedCrossRef Dereka XE, Markopoulou CE, Vrotsos IA (2006) Role of growth factors on periodontal repair. Growth Factors 24:260–267PubMedCrossRef
3.
go back to reference Ripamonti U, Reddi AH (1997) Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med 8:154–163PubMedCrossRef Ripamonti U, Reddi AH (1997) Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med 8:154–163PubMedCrossRef
4.
go back to reference Taba M Jr, Jin Q, Sugai JV, Giannobile WV (2005) Current concepts in periodontal bioengineering. Orthod Craniofac Res 8:292–302PubMedCrossRef Taba M Jr, Jin Q, Sugai JV, Giannobile WV (2005) Current concepts in periodontal bioengineering. Orthod Craniofac Res 8:292–302PubMedCrossRef
5.
go back to reference Carlson NE, Roach RB Jr (2002) Platelet-rich plasma: clinical applications in dentistry. J Am Dent Assoc 133:1383–1386PubMed Carlson NE, Roach RB Jr (2002) Platelet-rich plasma: clinical applications in dentistry. J Am Dent Assoc 133:1383–1386PubMed
6.
go back to reference Pradeep AR, Pai S, Garg G, Devi P, Shetty SK (2009) A randomized clinical trial of autologous platelet-rich plasma in the treatment of mandibular degree II furcation defects. J Clin Periodontol 36:581–588PubMedCrossRef Pradeep AR, Pai S, Garg G, Devi P, Shetty SK (2009) A randomized clinical trial of autologous platelet-rich plasma in the treatment of mandibular degree II furcation defects. J Clin Periodontol 36:581–588PubMedCrossRef
7.
go back to reference Heijl L, Heden G, Svardstrom G, Ostgren A (1997) Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol 24:705–714PubMedCrossRef Heijl L, Heden G, Svardstrom G, Ostgren A (1997) Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol 24:705–714PubMedCrossRef
8.
go back to reference Hirooka H (1998) The biologic concept for the use of enamel matrix protein: true periodontal regeneration. Quintessence Int 29:621–630PubMed Hirooka H (1998) The biologic concept for the use of enamel matrix protein: true periodontal regeneration. Quintessence Int 29:621–630PubMed
9.
go back to reference Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35:106–116PubMedCrossRef Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35:106–116PubMedCrossRef
10.
go back to reference Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 24:253–269CrossRef Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 24:253–269CrossRef
11.
go back to reference Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML (2006) Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000(41):123–135CrossRef Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML (2006) Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000(41):123–135CrossRef
12.
go back to reference van Dijk LJ, Schakenraad JM, van der Voort HM, Herkstroter FM, Busscher HJ (1991) Cell-seeding of periodontal ligament fibroblasts. A novel technique to create new attachment. A pilot study. J Clin Periodontol 18:196–199PubMedCrossRef van Dijk LJ, Schakenraad JM, van der Voort HM, Herkstroter FM, Busscher HJ (1991) Cell-seeding of periodontal ligament fibroblasts. A novel technique to create new attachment. A pilot study. J Clin Periodontol 18:196–199PubMedCrossRef
13.
go back to reference Lang H, Schuler N, Nolden R (1998) Attachment formation following replantation of cultured cells into periodontal defects—a study in minipigs. J Dent Res 77:393–405PubMedCrossRef Lang H, Schuler N, Nolden R (1998) Attachment formation following replantation of cultured cells into periodontal defects—a study in minipigs. J Dent Res 77:393–405PubMedCrossRef
14.
go back to reference Malekzadeh R, Hollinger JO, Buck D, Adams DF, McAllister BS (1998) Isolation of human osteoblast-like cells and in vitro amplification for tissue engineering. J Periodontol 69:1256–1262PubMedCrossRef Malekzadeh R, Hollinger JO, Buck D, Adams DF, McAllister BS (1998) Isolation of human osteoblast-like cells and in vitro amplification for tissue engineering. J Periodontol 69:1256–1262PubMedCrossRef
15.
go back to reference Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219:667–676PubMedCrossRef Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219:667–676PubMedCrossRef
16.
go back to reference Wada N, Bartold PM, Gronthos S (2011) Human foreskin fibroblasts exert immunomodulatory properties by a different mechanism to bone marrow mesenchymal stem cells. Stem Cells Dev 20:647–659PubMedCrossRef Wada N, Bartold PM, Gronthos S (2011) Human foreskin fibroblasts exert immunomodulatory properties by a different mechanism to bone marrow mesenchymal stem cells. Stem Cells Dev 20:647–659PubMedCrossRef
17.
go back to reference Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang C, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRef Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang C, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRef
18.
go back to reference Bartold PM, Shi S, Gronthos S (2006) Stem cells and periodontal regeneration. Periodontol 40:164–172CrossRef Bartold PM, Shi S, Gronthos S (2006) Stem cells and periodontal regeneration. Periodontol 40:164–172CrossRef
19.
go back to reference Ivanovski S, Gronthos S, Shi S, Bartold PM (2006) Stem cells in the periodontal ligament. Oral Dis 12:358–363PubMedCrossRef Ivanovski S, Gronthos S, Shi S, Bartold PM (2006) Stem cells in the periodontal ligament. Oral Dis 12:358–363PubMedCrossRef
20.
go back to reference Gronthos S, Fitter S, Diamond P, Simmons PJ, Itescu S, Zannettino AC (2007) A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells Dev 16:953–963PubMedCrossRef Gronthos S, Fitter S, Diamond P, Simmons PJ, Itescu S, Zannettino AC (2007) A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells Dev 16:953–963PubMedCrossRef
21.
go back to reference Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704PubMedCrossRef Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704PubMedCrossRef
22.
go back to reference Gronthos S, McCarty R, Mrozik K, Fitter S, Paton S, Menicanin D, Itescu S, Bartold PM, Xian C, Zannettino ACW (2009) Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues. Stem Cells Dev 18:1253–1262PubMedCrossRef Gronthos S, McCarty R, Mrozik K, Fitter S, Paton S, Menicanin D, Itescu S, Bartold PM, Xian C, Zannettino ACW (2009) Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues. Stem Cells Dev 18:1253–1262PubMedCrossRef
23.
go back to reference Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173PubMed Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173PubMed
24.
go back to reference Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835PubMedCrossRef Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835PubMedCrossRef
25.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef
26.
go back to reference Gronthos S, Mrozik K, Shi S, Bartold PM (2006) Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 79:310–317PubMedCrossRef Gronthos S, Mrozik K, Shi S, Bartold PM (2006) Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 79:310–317PubMedCrossRef
27.
go back to reference Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1:e79PubMedCrossRef Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1:e79PubMedCrossRef
28.
go back to reference Hammarstrom L (1997) Enamel matrix, cementum development and regeneration. J Clin Periodontol 24:658–668PubMedCrossRef Hammarstrom L (1997) Enamel matrix, cementum development and regeneration. J Clin Periodontol 24:658–668PubMedCrossRef
29.
go back to reference Zilm PS, Bartold PM (2011) Proteomic identification of proteinase inhibitors in the porcine enamel matrix derivative, EMD((R)). J Periodontal Res 46:111–117PubMedCrossRef Zilm PS, Bartold PM (2011) Proteomic identification of proteinase inhibitors in the porcine enamel matrix derivative, EMD((R)). J Periodontal Res 46:111–117PubMedCrossRef
30.
go back to reference Gestrelius S, Andersson C, Lidstrom D, Hammarstrom L, Somerman M (1997) In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol 24:685–692PubMedCrossRef Gestrelius S, Andersson C, Lidstrom D, Hammarstrom L, Somerman M (1997) In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol 24:685–692PubMedCrossRef
31.
go back to reference Rodrigues TL, Marchesan JT, Coletta RD, Novaes AB Jr, Grisi MFM, Souza SLS, Taba M Jr, Palioti DB (2007) Effects of enamel matrix derivative and transforming growth factor-beta1 on human periodontal ligament fibroblasts. J Clin Periodontol 34:514–522PubMedCrossRef Rodrigues TL, Marchesan JT, Coletta RD, Novaes AB Jr, Grisi MFM, Souza SLS, Taba M Jr, Palioti DB (2007) Effects of enamel matrix derivative and transforming growth factor-beta1 on human periodontal ligament fibroblasts. J Clin Periodontol 34:514–522PubMedCrossRef
32.
go back to reference Brett PM, Parkar M, Olsen I, Tonetti M (2002) Expression profiling of periodontal ligament cells stimulated with enamel matrix proteins in vitro: a model for tissue regeneration. J Dent Res 81:776–783PubMedCrossRef Brett PM, Parkar M, Olsen I, Tonetti M (2002) Expression profiling of periodontal ligament cells stimulated with enamel matrix proteins in vitro: a model for tissue regeneration. J Dent Res 81:776–783PubMedCrossRef
33.
go back to reference Parkar MH, Tonetti M (2004) Gene expression profiles of periodontal ligament cells treated with enamel matrix proteins in vitro: analysis using cDNA arrays. J Periodontol 75:1539–1546PubMedCrossRef Parkar MH, Tonetti M (2004) Gene expression profiles of periodontal ligament cells treated with enamel matrix proteins in vitro: analysis using cDNA arrays. J Periodontol 75:1539–1546PubMedCrossRef
34.
go back to reference Barkana I, Alexopoulou E, Ziv S, Jacob-Hirsch J, Amariglio N, Pitaru S, Vardimon AD, Nemcovsky CE (2007) Gene profile in periodontal ligament cells and clones with enamel matrix proteins derivative. J Clin Periodontol 34:599–609PubMedCrossRef Barkana I, Alexopoulou E, Ziv S, Jacob-Hirsch J, Amariglio N, Pitaru S, Vardimon AD, Nemcovsky CE (2007) Gene profile in periodontal ligament cells and clones with enamel matrix proteins derivative. J Clin Periodontol 34:599–609PubMedCrossRef
35.
go back to reference Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347PubMedCrossRef Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347PubMedCrossRef
36.
go back to reference Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, Kurihara H (2004) Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 75:1281–1287PubMedCrossRef Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, Kurihara H (2004) Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 75:1281–1287PubMedCrossRef
37.
go back to reference Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073PubMedCrossRef Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073PubMedCrossRef
38.
go back to reference Rosen V (2009) BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20:475–480PubMedCrossRef Rosen V (2009) BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20:475–480PubMedCrossRef
39.
go back to reference Thies RS, Bauduy M, Ashton BA, Kurtzberg L, Wozney JM, Rosen V (1992) Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130:1318–1324PubMedCrossRef Thies RS, Bauduy M, Ashton BA, Kurtzberg L, Wozney JM, Rosen V (1992) Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130:1318–1324PubMedCrossRef
40.
go back to reference Wang EA, Israel DI, Kelly S, Luxenberg DP (1993) Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9:57–71PubMedCrossRef Wang EA, Israel DI, Kelly S, Luxenberg DP (1993) Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9:57–71PubMedCrossRef
41.
go back to reference Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754PubMedCrossRef Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754PubMedCrossRef
42.
go back to reference Takayama T, Suzuki N, Narukawa M, Tokunaga T, Otsuka K, Ito K (2005) Enamel matrix derivative stimulates core binding factor alpha1/Runt-related transcription factor-2 expression via activation of Smad1 in C2C12 cells. J Periodontol 76:244–249PubMedCrossRef Takayama T, Suzuki N, Narukawa M, Tokunaga T, Otsuka K, Ito K (2005) Enamel matrix derivative stimulates core binding factor alpha1/Runt-related transcription factor-2 expression via activation of Smad1 in C2C12 cells. J Periodontol 76:244–249PubMedCrossRef
43.
go back to reference Guida L, Annunziata M, Carinci F, Di Feo A, Passaro I, Oliva A (2007) In vitro biologic response of human bone marrow stromal cells to enamel matrix derivative. J Periodontol 78:2190–2196PubMedCrossRef Guida L, Annunziata M, Carinci F, Di Feo A, Passaro I, Oliva A (2007) In vitro biologic response of human bone marrow stromal cells to enamel matrix derivative. J Periodontol 78:2190–2196PubMedCrossRef
44.
go back to reference Lossdorfer S, Sun M, Gotz W, Dard M, Jager A (2007) Enamel matrix derivative promotes human periodontal ligament cell differentiation and osteoprotegerin production in vitro. J Dent Res 86:980–985PubMedCrossRef Lossdorfer S, Sun M, Gotz W, Dard M, Jager A (2007) Enamel matrix derivative promotes human periodontal ligament cell differentiation and osteoprotegerin production in vitro. J Dent Res 86:980–985PubMedCrossRef
45.
go back to reference Schwartz Z, Carnes DL Jr, Pulliam R, Lohmann CH, Sylvia VL, Liu Y, Dean DD, Cochran DL, Boyan BD (2000) Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol 71:1287–1296PubMedCrossRef Schwartz Z, Carnes DL Jr, Pulliam R, Lohmann CH, Sylvia VL, Liu Y, Dean DD, Cochran DL, Boyan BD (2000) Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol 71:1287–1296PubMedCrossRef
46.
go back to reference Hama H, Azuma H, Seto H, Kido J, Nagata T (2008) Inhibitory effect of enamel matrix derivative on osteoblastic differentiation of rat calvaria cells in culture. J Periodontal Res 43:179–185PubMedCrossRef Hama H, Azuma H, Seto H, Kido J, Nagata T (2008) Inhibitory effect of enamel matrix derivative on osteoblastic differentiation of rat calvaria cells in culture. J Periodontal Res 43:179–185PubMedCrossRef
47.
go back to reference Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430PubMedCrossRef Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430PubMedCrossRef
48.
go back to reference Tomoeda M, Yamada S, Shirai H, Ozawa Y, Yanagita M, Murakami S (2008) PLAP-1/asporin inhibits activation of BMP receptor via its leucine-rich repeat motif. Biochem Biophys Res Commun 371:191–196PubMedCrossRef Tomoeda M, Yamada S, Shirai H, Ozawa Y, Yanagita M, Murakami S (2008) PLAP-1/asporin inhibits activation of BMP receptor via its leucine-rich repeat motif. Biochem Biophys Res Commun 371:191–196PubMedCrossRef
49.
go back to reference Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249PubMedCrossRef Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249PubMedCrossRef
50.
go back to reference Oku E, Kanaji T, Takata Y, Oshima K, Seki R, Morishige S, Imamura R, Ohtsubo K, Hashiguchi M, Osaki K, Yakushiji K, Yoshimoto K, Ogata H, Hamada H, Izuhara K, Sata M, Okamura T (2008) Periostin and bone marrow fibrosis. Int J Hematol 88:57–63PubMedCrossRef Oku E, Kanaji T, Takata Y, Oshima K, Seki R, Morishige S, Imamura R, Ohtsubo K, Hashiguchi M, Osaki K, Yakushiji K, Yoshimoto K, Ogata H, Hamada H, Izuhara K, Sata M, Okamura T (2008) Periostin and bone marrow fibrosis. Int J Hematol 88:57–63PubMedCrossRef
51.
go back to reference Kawana F, Sawae Y, Sahara T, Tanaka S, Debari K, Shimizu M, Sasaki T (2001) Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur. Anat Rec 264:438–446PubMedCrossRef Kawana F, Sawae Y, Sahara T, Tanaka S, Debari K, Shimizu M, Sasaki T (2001) Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur. Anat Rec 264:438–446PubMedCrossRef
52.
go back to reference Sawae Y, Sahara T, Kawana F, Sasaki T (2002) Effects of enamel matrix derivative on mineralized tissue formation during bone wound healing in rat parietal bone defects. J Electron Microsc 51:413–423CrossRef Sawae Y, Sahara T, Kawana F, Sasaki T (2002) Effects of enamel matrix derivative on mineralized tissue formation during bone wound healing in rat parietal bone defects. J Electron Microsc 51:413–423CrossRef
53.
go back to reference Koike Y, Murakami S, Matsuzaka K, Inoue T (2005) The effect of Emdogain on ectopic bone formation in tubes of rat demineralized dentin matrix. J Periodontal Res 40:385–394PubMedCrossRef Koike Y, Murakami S, Matsuzaka K, Inoue T (2005) The effect of Emdogain on ectopic bone formation in tubes of rat demineralized dentin matrix. J Periodontal Res 40:385–394PubMedCrossRef
54.
go back to reference Donos N, Kostopoulos L, Tonetti M, Karring T, Lang NP (2006) The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation. Clin Oral Implants Res 17:434–438PubMedCrossRef Donos N, Kostopoulos L, Tonetti M, Karring T, Lang NP (2006) The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation. Clin Oral Implants Res 17:434–438PubMedCrossRef
55.
go back to reference Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188PubMedCrossRef Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188PubMedCrossRef
56.
go back to reference Eid K, Zelicof S, Perona BP, Sledge CB, Glowacki J (2001) Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation. J Orthop Res 19:962–969PubMedCrossRef Eid K, Zelicof S, Perona BP, Sledge CB, Glowacki J (2001) Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation. J Orthop Res 19:962–969PubMedCrossRef
Metadata
Title
Effect of coating Straumann® Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation
Authors
Krzysztof Marek Mrozik
Stan Gronthos
Danijela Menicanin
Victor Marino
P. Mark Bartold
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Clinical Oral Investigations / Issue 3/2012
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-011-0558-3

Other articles of this Issue 3/2012

Clinical Oral Investigations 3/2012 Go to the issue