Skip to main content
Top
Published in: European Journal of Nutrition 7/2009

01-10-2009 | Original Contribution

Effect of CLA isomers and their mixture on aging C57Bl/6J mice

Authors: Ganesh V. Halade, Md. M. Rahman, Gabriel Fernandes

Published in: European Journal of Nutrition | Issue 7/2009

Login to get access

Abstract

Background

Dietary supplements containing conjugated linoleic acid (CLA) are widely promoted for weight loss management over the counter. Recently, FDA approved the CLA as Generally Recognized as Safe category so that it can be used in various food and beverages. The combined effect of CLA isomers have been studied extensively in animals and humans, however, the role of individual isomers remains unraveled.

Aim

The present investigation addresses the effects of CLA isomers on body composition and body weight as well as safety using female C57Bl/6J aging mice.

Methods

Two main CLA isomers and their mixture were fed to 12-months-old female C57Bl/6J mice. Ten percent corn oil (CO) based fat diet supplemented with 0.5% purified cis 9 trans 11 (c9,t11) CLA or trans 10 cis 12 (t10,c12) CLA or their mixture (CLA mix, 50:50) for 6 months. The lean mass, fat mass, glucose, non-esterified fatty acids, and insulin were examined at the end of study.

Results

As a result of 6 months dietary intervention, both t10,c12 CLA and CLA mix groups showed increased lean mass and reduced fat mass compared to that of c9,t11 CLA and CO group. However, insulin resistance and liver hypertrophy were observed in t10,c12 CLA and CLA mix groups based on the results of homeostasis model assessment, revised quantitative insulin-sensitivity check index (R-QUICKI), intravenous glucose tolerance test, and liver histology. Liver histology revealed that increased liver weight was due to hypertrophy.

Conclusion

In conclusion, the major CLA isomers have a distinct effect on fat mass, glucose, and insulin metabolism. The t10,c12 isomer was found to reduce the fat mass and to increase the lean mass but significantly contributed to increase insulin resistance and liver hypertrophy, whereas c9,t11 isomer prevented the insulin resistance. Between the two major CLA isomers, the t10,c12 was attributed to reduce fat mass whereas, c9,t11 improves the insulin sensitivity.
Literature
1.
go back to reference Akahoshi A, Goto Y, Murao K, Miyazaki T, Yamasaki M, Nonaka M, Yamada K, Sugano M (2002) Conjugated linoleic acid reduces body fats and cytokine levels of mice. Biosci Biotechnol Biochem 66:916–920CrossRef Akahoshi A, Goto Y, Murao K, Miyazaki T, Yamasaki M, Nonaka M, Yamada K, Sugano M (2002) Conjugated linoleic acid reduces body fats and cytokine levels of mice. Biosci Biotechnol Biochem 66:916–920CrossRef
2.
go back to reference Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130:1548–1554 Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130:1548–1554
3.
go back to reference Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810CrossRef Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810CrossRef
4.
go back to reference Bhattacharya A, Rahman MM, McCarter R, O’Shea M, Fernandes G (2006) Conjugated linoleic acid and chromium lower body weight and visceral fat mass in high-fat-diet-fed mice. Lipids 41:437–444CrossRef Bhattacharya A, Rahman MM, McCarter R, O’Shea M, Fernandes G (2006) Conjugated linoleic acid and chromium lower body weight and visceral fat mass in high-fat-diet-fed mice. Lipids 41:437–444CrossRef
5.
go back to reference Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O’Shea M, Fernandes G (2005) The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice. J Nutr 135:1124–1130 Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O’Shea M, Fernandes G (2005) The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice. J Nutr 135:1124–1130
6.
go back to reference Brodie AE, Manning VA, Ferguson KR, Jewell DE, Hu CY (1999) Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3–L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. J Nutr 129:602–606 Brodie AE, Manning VA, Ferguson KR, Jewell DE, Hu CY (1999) Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3–L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. J Nutr 129:602–606
7.
go back to reference Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation—results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am J Clin Nutr 82:428–434 Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation—results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am J Clin Nutr 82:428–434
8.
go back to reference DeLany JP, Blohm F, Truett AA, Scimeca JA, West DB (1999) Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol 276:R1172–R1179 DeLany JP, Blohm F, Truett AA, Scimeca JA, West DB (1999) Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol 276:R1172–R1179
9.
go back to reference Despres JP, Nadeau A, Tremblay A, Ferland M, Moorjani S, Lupien PJ, Theriault G, Pinault S, Bouchard C (1989) Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 38:304–309CrossRef Despres JP, Nadeau A, Tremblay A, Ferland M, Moorjani S, Lupien PJ, Theriault G, Pinault S, Bouchard C (1989) Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 38:304–309CrossRef
10.
go back to reference Dirks AJ, Leeuwenburgh C (2006) Tumor necrosis factor alpha signaling in skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 17:501–508CrossRef Dirks AJ, Leeuwenburgh C (2006) Tumor necrosis factor alpha signaling in skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 17:501–508CrossRef
11.
go back to reference Field CJ, Ryan EA, Thomson AB, Clandinin MT (1990) Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J Biol Chem 265:11143–11150 Field CJ, Ryan EA, Thomson AB, Clandinin MT (1990) Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J Biol Chem 265:11143–11150
12.
go back to reference Ha YL, Grimm NK, Pariza MW (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8:1881–1887CrossRef Ha YL, Grimm NK, Pariza MW (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8:1881–1887CrossRef
13.
go back to reference Ha YL, Storkson J, Pariza MW (1990) Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res 50:1097–1101 Ha YL, Storkson J, Pariza MW (1990) Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res 50:1097–1101
14.
go back to reference Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL (2004) Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice. Obes Res 12:1435–1444CrossRef Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL (2004) Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice. Obes Res 12:1435–1444CrossRef
16.
go back to reference Inoue N, Nagao K, Hirata J, Wang YM, Yanagita T (2004) Conjugated linoleic acid prevents the development of essential hypertension in spontaneously hypertensive rats. Biochem Biophys Res Commun 323:679–684CrossRef Inoue N, Nagao K, Hirata J, Wang YM, Yanagita T (2004) Conjugated linoleic acid prevents the development of essential hypertension in spontaneously hypertensive rats. Biochem Biophys Res Commun 323:679–684CrossRef
17.
go back to reference Ip C, Singh M, Thompson HJ, Scimeca JA (1994) Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res 54:1212–1215 Ip C, Singh M, Thompson HJ, Scimeca JA (1994) Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res 54:1212–1215
18.
go back to reference Kelley DS, Simon VA, Taylor PC, Rudolph IL, Benito P, Nelson GJ, Mackey BE, Erickson KL (2001) Dietary supplementation with conjugated linoleic acid increased its concentration in human peripheral blood mononuclear cells, but did not alter their function. Lipids 36:669–674CrossRef Kelley DS, Simon VA, Taylor PC, Rudolph IL, Benito P, Nelson GJ, Mackey BE, Erickson KL (2001) Dietary supplementation with conjugated linoleic acid increased its concentration in human peripheral blood mononuclear cells, but did not alter their function. Lipids 36:669–674CrossRef
19.
go back to reference Kelley DS, Warren JM, Simon VA, Bartolini G, Mackey BE, Erickson KL (2002) Similar effects of c9, t11-CLA and t10, c12-CLA on immune cell functions in mice. Lipids 37:725–728CrossRef Kelley DS, Warren JM, Simon VA, Bartolini G, Mackey BE, Erickson KL (2002) Similar effects of c9, t11-CLA and t10, c12-CLA on immune cell functions in mice. Lipids 37:725–728CrossRef
20.
go back to reference Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J Biol Chem 241:1350–1354 Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J Biol Chem 241:1350–1354
21.
go back to reference Kissebah AH (1991) Insulin resistance in visceral obesity. Int J Obes 15(Suppl 2):109–115 Kissebah AH (1991) Insulin resistance in visceral obesity. Int J Obes 15(Suppl 2):109–115
22.
go back to reference Larsen TM, Toubro S, Astrup A (2003) Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res 44:2234–2241CrossRef Larsen TM, Toubro S, Astrup A (2003) Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res 44:2234–2241CrossRef
23.
go back to reference Larsen TM, Toubro S, Gudmundsen O, Astrup A (2006) Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr 83:606–612 Larsen TM, Toubro S, Gudmundsen O, Astrup A (2006) Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr 83:606–612
24.
go back to reference Lee KN, Kritchevsky D, Pariza MW (1994) Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108:19–25CrossRef Lee KN, Kritchevsky D, Pariza MW (1994) Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108:19–25CrossRef
25.
go back to reference Lin H, Boylston TD, Chang MJ, Luedecke LO, Shultz TD (1995) Survey of the conjugated linoleic acid contents of dairy products. J Dairy Sci 78:2358–2365CrossRef Lin H, Boylston TD, Chang MJ, Luedecke LO, Shultz TD (1995) Survey of the conjugated linoleic acid contents of dairy products. J Dairy Sci 78:2358–2365CrossRef
26.
go back to reference Liu S, Baracos VE, Quinney HA, Clandinin MT (1994) Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J 299(Pt 3):831–837 Liu S, Baracos VE, Quinney HA, Clandinin MT (1994) Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J 299(Pt 3):831–837
27.
go back to reference Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161CrossRef Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161CrossRef
28.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRef
29.
go back to reference Medina EA, Horn WF, Keim NL, Havel PJ, Benito P, Kelley DS, Nelson GJ, Erickson KL (2000) Conjugated linoleic acid supplementation in humans: effects on circulating leptin concentrations and appetite. Lipids 35:783–788CrossRef Medina EA, Horn WF, Keim NL, Havel PJ, Benito P, Kelley DS, Nelson GJ, Erickson KL (2000) Conjugated linoleic acid supplementation in humans: effects on circulating leptin concentrations and appetite. Lipids 35:783–788CrossRef
30.
go back to reference Miller CC, Park Y, Pariza MW, Cook ME (1994) Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem Biophys Res Commun 198:1107–1112CrossRef Miller CC, Park Y, Pariza MW, Cook ME (1994) Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem Biophys Res Commun 198:1107–1112CrossRef
31.
go back to reference Moulias R, Meaume S, Raynaud-Simon A (1999) Sarcopenia, hypermetabolism, and aging. Z Gerontol Geriatr 32:425–432CrossRef Moulias R, Meaume S, Raynaud-Simon A (1999) Sarcopenia, hypermetabolism, and aging. Z Gerontol Geriatr 32:425–432CrossRef
32.
go back to reference Ohashi A, Matsushita Y, Kimura K, Miyashita K, Saito M (2004) Conjugated linoleic acid deteriorates insulin resistance in obese/diabetic mice in association with decreased production of adiponectin and leptin. J Nutr Sci Vitaminol (Tokyo) 50:416–421 Ohashi A, Matsushita Y, Kimura K, Miyashita K, Saito M (2004) Conjugated linoleic acid deteriorates insulin resistance in obese/diabetic mice in association with decreased production of adiponectin and leptin. J Nutr Sci Vitaminol (Tokyo) 50:416–421
33.
go back to reference Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 129:2037–2042 Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 129:2037–2042
34.
go back to reference Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858CrossRef Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858CrossRef
35.
go back to reference Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW (1999) Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235–241CrossRef Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW (1999) Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235–241CrossRef
36.
go back to reference Perseghin G, Caumo A, Caloni M, Testolin G, Luzi L (2001) Incorporation of the fasting plasma FFA concentration into QUICKI improves its association with insulin sensitivity in nonobese individuals. J Clin Endocrinol Metab 86:4776–4781CrossRef Perseghin G, Caumo A, Caloni M, Testolin G, Luzi L (2001) Incorporation of the fasting plasma FFA concentration into QUICKI improves its association with insulin sensitivity in nonobese individuals. J Clin Endocrinol Metab 86:4776–4781CrossRef
37.
go back to reference Rahman MM, Bhattacharya A, Banu J, Fernandes G (2007) Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 18:467–474CrossRef Rahman MM, Bhattacharya A, Banu J, Fernandes G (2007) Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 18:467–474CrossRef
38.
go back to reference Riserus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516–1521CrossRef Riserus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516–1521CrossRef
39.
go back to reference Riserus U, Basu S, Jovinge S, Fredrikson GN, Arnlov J, Vessby B (2002) Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 106:1925–1929CrossRef Riserus U, Basu S, Jovinge S, Fredrikson GN, Arnlov J, Vessby B (2002) Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 106:1925–1929CrossRef
40.
go back to reference Roche HM, Noone E, Sewter C, Mc Bennett S, Savage D, Gibney MJ, O’Rahilly S, Vidal-Puig AJ (2002) Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha. Diabetes 51:2037–2044CrossRef Roche HM, Noone E, Sewter C, Mc Bennett S, Savage D, Gibney MJ, O’Rahilly S, Vidal-Puig AJ (2002) Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha. Diabetes 51:2037–2044CrossRef
41.
go back to reference Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50:1149–1157CrossRef Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50:1149–1157CrossRef
42.
go back to reference Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med 341:248–257CrossRef Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med 341:248–257CrossRef
43.
go back to reference Staiger H, Haring HU (2005) Adipocytokines: fat-derived humoral mediators of metabolic homeostasis. Exp Clin Endocrinol Diabetes 113:67–79CrossRef Staiger H, Haring HU (2005) Adipocytokines: fat-derived humoral mediators of metabolic homeostasis. Exp Clin Endocrinol Diabetes 113:67–79CrossRef
44.
go back to reference Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216CrossRef Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216CrossRef
45.
go back to reference Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6 J mice. Diabetes 37:1163–1167CrossRef Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6 J mice. Diabetes 37:1163–1167CrossRef
46.
go back to reference Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542CrossRef Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542CrossRef
47.
go back to reference Wallace TM, Levy JC, Matthews DR (2004) An increase in insulin sensitivity and basal beta-cell function in diabetic subjects treated with pioglitazone in a placebo-controlled randomized study. Diabet Med 21:568–576CrossRef Wallace TM, Levy JC, Matthews DR (2004) An increase in insulin sensitivity and basal beta-cell function in diabetic subjects treated with pioglitazone in a placebo-controlled randomized study. Diabet Med 21:568–576CrossRef
48.
go back to reference Wang YC, Colditz GA, Kuntz KM (2007) Forecasting the obesity epidemic in the aging U.S. population. Obesity (Silver Spring) 15(285):5–2865 Wang YC, Colditz GA, Kuntz KM (2007) Forecasting the obesity epidemic in the aging U.S. population. Obesity (Silver Spring) 15(285):5–2865
49.
go back to reference West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:R667–R672 West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:R667–R672
50.
go back to reference Whigham LD, Cook ME, Atkinson RL (2000) Conjugated linoleic acid: implications for human health. Pharmacol Res 42:503–510CrossRef Whigham LD, Cook ME, Atkinson RL (2000) Conjugated linoleic acid: implications for human health. Pharmacol Res 42:503–510CrossRef
51.
go back to reference Whigham LD, O’Shea M, Mohede IC, Walaski HP, Atkinson RL (2004) Safety profile of conjugated linoleic acid in a 12-month trial in obese humans. Food Chem Toxicol 42:1701–1709CrossRef Whigham LD, O’Shea M, Mohede IC, Walaski HP, Atkinson RL (2004) Safety profile of conjugated linoleic acid in a 12-month trial in obese humans. Food Chem Toxicol 42:1701–1709CrossRef
52.
go back to reference Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219CrossRef Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219CrossRef
53.
go back to reference Yamasaki M, Ikeda A, Oji M, Tanaka Y, Hirao A, Kasai M, Iwata T, Tachibana H, Yamada K (2003) Modulation of body fat and serum leptin levels by dietary conjugated linoleic acid in Sprague-Dawley rats fed various fat-level diets. Nutrition 19:30–35CrossRef Yamasaki M, Ikeda A, Oji M, Tanaka Y, Hirao A, Kasai M, Iwata T, Tachibana H, Yamada K (2003) Modulation of body fat and serum leptin levels by dietary conjugated linoleic acid in Sprague-Dawley rats fed various fat-level diets. Nutrition 19:30–35CrossRef
54.
go back to reference Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946CrossRef Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946CrossRef
55.
go back to reference Yu Y, Correll PH, Vanden Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 1581:89–99 Yu Y, Correll PH, Vanden Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 1581:89–99
56.
go back to reference Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18:388–395CrossRef Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18:388–395CrossRef
57.
go back to reference Zamboni M, Mazzali G, Zoico E, Harris TB, Meigs JB, Di Francesco V, Fantin F, Bissoli L, Bosello O (2005) Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes (Lond) 29:1011–1029CrossRef Zamboni M, Mazzali G, Zoico E, Harris TB, Meigs JB, Di Francesco V, Fantin F, Bissoli L, Bosello O (2005) Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes (Lond) 29:1011–1029CrossRef
Metadata
Title
Effect of CLA isomers and their mixture on aging C57Bl/6J mice
Authors
Ganesh V. Halade
Md. M. Rahman
Gabriel Fernandes
Publication date
01-10-2009
Publisher
D. Steinkopff-Verlag
Published in
European Journal of Nutrition / Issue 7/2009
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-009-0029-7

Other articles of this Issue 7/2009

European Journal of Nutrition 7/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine