Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2016

Open Access 01-12-2016 | Research

Effect of bone morphogenetic protein-4 on in vitro growth, steroidogenesis and subsequent developmental competence of the oocyte-granulosa cell complex derived from bovine early antral follicles

Authors: Yinghua Yang, Chihiro Kanno, Weiping Huang, Sung-Sik Kang, Yojiro Yanagawa, Masashi Nagano

Published in: Reproductive Biology and Endocrinology | Issue 1/2016

Login to get access

Abstract

Background

Bone morphogenetic proteins (BMPs) play important regulatory roles during folliculogenesis. Theca-derived BMP-4 may be beneficial to in vitro growth culture of early antral follicle-derived oocyte-granulosa cell complexes (OGCs), which is lacking in theca-derived products.

Methods

BMP-4 (0 [control], 10 and 50 ng/mL) was added to growth culture medium. Growth, steroidogenesis and the subsequent developmental competence of OGCs derived from bovine early antral follicles (0.5-1 mm) were examined.

Results

At 4, 8 and 12 days of growth culture, progesterone production by granulosa cells was suppressed by the addition of BMP-4 compared to the control (P < 0.05). At 12 days, both the OGC survivability and granulosa cell number in the 50 ng/mL BMP-4 treated group were lower than those of control (48.2 % vs. 67.8 %; 4.96 × 104 vs. 8.5 × 104 cells; P < 0.05, respectively), while no difference was found between 10 ng/mL and the control. The mean diameters of granulosa cell in the BMP-4 treated groups were smaller than that of the control (P < 0.05). However, the granulosa cell viability, oocyte diameter, oocyte nuclear maturation rate and normal fertilization rate were similar in all of the experimental groups, regardless of the amount of BMP-4 addition (P ˃ 0.05). BMP-4 treated in vitro-grown oocytes showed lower blastocyst rates than untreated ones (P < 0.05).

Conclusions

BMP-4 addition during in vitro growth culture suppressed progesterone production and decreased the diameter of granulosa cells, suggesting its effect on steroidogenesis; importantly, it did not affect oocyte growth, nuclear maturation and fertilization. However, BMP-4 impaired subsequent embryonic development, and in higher concentration (50 ng/mL) even compromised OGC viability by suppressing proliferation of granulosa cells.
Literature
1.
go back to reference Neglia G, Gasparrini B, Di Brienza VC, Di Palo R, Campanile G, Presicce GA, et al. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology. 2003;59(5–6):1123–30.PubMedCrossRef Neglia G, Gasparrini B, Di Brienza VC, Di Palo R, Campanile G, Presicce GA, et al. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology. 2003;59(5–6):1123–30.PubMedCrossRef
3.
go back to reference Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.PubMedCrossRef Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.PubMedCrossRef
5.
go back to reference Yamamoto K, Otoi T, Koyama N, Horikita N, Tachikawa S, Miyano T. Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology. 1999;52(1):81–9.PubMedCrossRef Yamamoto K, Otoi T, Koyama N, Horikita N, Tachikawa S, Miyano T. Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology. 1999;52(1):81–9.PubMedCrossRef
6.
go back to reference Senbon S, Miyano T. Bovine oocytes in early antral follicles grow in serum-free media: effect of hypoxanthine on follicular morphology and oocyte growth. Zygote. 2002;10(4):301–9.PubMedCrossRef Senbon S, Miyano T. Bovine oocytes in early antral follicles grow in serum-free media: effect of hypoxanthine on follicular morphology and oocyte growth. Zygote. 2002;10(4):301–9.PubMedCrossRef
7.
go back to reference Huang W, Kang SS, Nagai K, Yanagawa Y, Takahashi Y, Nagano M. Mitochondrial activity during pre-maturational culture in in vitro-grown bovine oocytes is related to maturational and developmental competences. Reprod Fertil Dev. 2014. doi:10.1071/RD14023. Huang W, Kang SS, Nagai K, Yanagawa Y, Takahashi Y, Nagano M. Mitochondrial activity during pre-maturational culture in in vitro-grown bovine oocytes is related to maturational and developmental competences. Reprod Fertil Dev. 2014. doi:10.​1071/​RD14023.
8.
go back to reference Hirao Y, Itoh T, Shimizu M, Iga K, Aoyagi K, Kobayashi M, et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol Reprod. 2004;70(1):83–91. doi:10.1095/biolreprod.103.021238.PubMedCrossRef Hirao Y, Itoh T, Shimizu M, Iga K, Aoyagi K, Kobayashi M, et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol Reprod. 2004;70(1):83–91. doi:10.​1095/​biolreprod.​103.​021238.PubMedCrossRef
10.
go back to reference Kayamori T, Kosaka N, Miyamoto A, Shimizu T. The differential pathways of bone morphogenetic protein (BMP)-4 and–7 in the suppression of the bovine granulosa cell apoptosis. Mol Cell Biochem. 2009;323(1–2):161–8. doi:10.1007/s11010-008-9976-1.PubMedCrossRef Kayamori T, Kosaka N, Miyamoto A, Shimizu T. The differential pathways of bone morphogenetic protein (BMP)-4 and–7 in the suppression of the bovine granulosa cell apoptosis. Mol Cell Biochem. 2009;323(1–2):161–8. doi:10.​1007/​s11010-008-9976-1.PubMedCrossRef
11.
go back to reference Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78(3–4):165–83.PubMedCrossRef Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78(3–4):165–83.PubMedCrossRef
12.
go back to reference Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol. 2003;1:9.PubMedPubMedCentralCrossRef Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol. 2003;1:9.PubMedPubMedCentralCrossRef
13.
go back to reference Yamashita H, Murayama C, Takasugi R, Miyamoto A, Shimizu T. BMP-4 suppresses progesterone production by inhibiting histone H3 acetylation of StAR in bovine granulosa cells in vitro. Mol Cell Biochem. 2011;348(1–2):183–90. doi:10.1007/s11010-010-0653-9.PubMedCrossRef Yamashita H, Murayama C, Takasugi R, Miyamoto A, Shimizu T. BMP-4 suppresses progesterone production by inhibiting histone H3 acetylation of StAR in bovine granulosa cells in vitro. Mol Cell Biochem. 2011;348(1–2):183–90. doi:10.​1007/​s11010-010-0653-9.PubMedCrossRef
14.
go back to reference Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4,–6 and–7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction. 2004;127(2):239–54. doi:10.1530/rep.1.00090.PubMedCrossRef Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4,–6 and–7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction. 2004;127(2):239–54. doi:10.​1530/​rep.​1.​00090.PubMedCrossRef
15.
go back to reference Ireland J, Ward F, Jimenez-Krassel F, Ireland JLH, Smith GW, Lonergan P, et al. Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum Reprod. 2007;22(6):1687–95. doi:10.1093/humrep/dem071.PubMedCrossRef Ireland J, Ward F, Jimenez-Krassel F, Ireland JLH, Smith GW, Lonergan P, et al. Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum Reprod. 2007;22(6):1687–95. doi:10.​1093/​humrep/​dem071.PubMedCrossRef
17.
go back to reference Modina S, Borromeo V, Luciano AM, Lodde V, Franciosi F, Secchi C. Relationship between growth hormone concentrations in bovine oocytes and follicular fluid and oocyte developmental competence. Eur J Histochem. 2007;51(3):173–80.PubMed Modina S, Borromeo V, Luciano AM, Lodde V, Franciosi F, Secchi C. Relationship between growth hormone concentrations in bovine oocytes and follicular fluid and oocyte developmental competence. Eur J Histochem. 2007;51(3):173–80.PubMed
19.
go back to reference Yanagawa Y, Matsuura Y, Suzuki M, Saga S, Okuyama H, Fukui D, et al. Accessory corpora lutea formation in pregnant Hokkaido sika deer (Cervus nippon yesoensis) investigated by examination of ovarian dynamics and steroid hormone concentrations. J Reprod Dev. 2015;61(1):61–6. doi:10.1262/jrd.2014-076.PubMedPubMedCentralCrossRef Yanagawa Y, Matsuura Y, Suzuki M, Saga S, Okuyama H, Fukui D, et al. Accessory corpora lutea formation in pregnant Hokkaido sika deer (Cervus nippon yesoensis) investigated by examination of ovarian dynamics and steroid hormone concentrations. J Reprod Dev. 2015;61(1):61–6. doi:10.​1262/​jrd.​2014-076.PubMedPubMedCentralCrossRef
20.
go back to reference Takahashi Y, Hishinuma M, Matsui M, Tanaka H, Kanagawa H. Development of in vitro matured/fertilized bovine embryos in a chemically defined medium: influence of oxygen concentration in the gas atmosphere. J Vet Med Sci. 1996;58(9):897–902.PubMedCrossRef Takahashi Y, Hishinuma M, Matsui M, Tanaka H, Kanagawa H. Development of in vitro matured/fertilized bovine embryos in a chemically defined medium: influence of oxygen concentration in the gas atmosphere. J Vet Med Sci. 1996;58(9):897–902.PubMedCrossRef
21.
go back to reference Nagano M, Kang SS, Koyama K, Huang WP, Yanagawa Y, Takahashi Y. In vitro maturation system for individual culture of bovine oocytes using micro-volume multi-well plate. Jpn J Vet Res. 2013;61(4):149–54.PubMed Nagano M, Kang SS, Koyama K, Huang WP, Yanagawa Y, Takahashi Y. In vitro maturation system for individual culture of bovine oocytes using micro-volume multi-well plate. Jpn J Vet Res. 2013;61(4):149–54.PubMed
22.
go back to reference Takahashi Y, Kanagawa H. Effect of oxygen concentration in the gas atmosphere during in vitro insemination of bovine oocytes on the subsequent embryonic development in vitro. J Vet Med Sci. 1998;60(3):365–7.PubMedCrossRef Takahashi Y, Kanagawa H. Effect of oxygen concentration in the gas atmosphere during in vitro insemination of bovine oocytes on the subsequent embryonic development in vitro. J Vet Med Sci. 1998;60(3):365–7.PubMedCrossRef
23.
go back to reference Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963–78.PubMedCrossRef Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963–78.PubMedCrossRef
25.
go back to reference O’Shea JD, Rodgers RJ, D’Occhio MJ. Cellular composition of the cyclic corpus luteum of the cow. J Reprod Fertil. 1989;85(2):483–7.PubMedCrossRef O’Shea JD, Rodgers RJ, D’Occhio MJ. Cellular composition of the cyclic corpus luteum of the cow. J Reprod Fertil. 1989;85(2):483–7.PubMedCrossRef
26.
go back to reference Meidan R, Girsh E, Blum O, Aberdam E. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biol Reprod. 1990;43(6):913–21.PubMedCrossRef Meidan R, Girsh E, Blum O, Aberdam E. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biol Reprod. 1990;43(6):913–21.PubMedCrossRef
27.
go back to reference Jolly PD, Tisdall DJ, Heath DA, Lun S, Mcnatty KP. Apoptosis in Bovine Granulosa-Cells in Relation to Steroid-Synthesis, Cyclic Adenosine-3′,5′-Monophosphate Response to Follicle-Stimulating-Hormone and Luteinizing-Hormone, and Follicular Atresia. Biol Reprod. 1994;51(5):934–44. doi:10.1095/biolreprod51.5.934.PubMedCrossRef Jolly PD, Tisdall DJ, Heath DA, Lun S, Mcnatty KP. Apoptosis in Bovine Granulosa-Cells in Relation to Steroid-Synthesis, Cyclic Adenosine-3′,5′-Monophosphate Response to Follicle-Stimulating-Hormone and Luteinizing-Hormone, and Follicular Atresia. Biol Reprod. 1994;51(5):934–44. doi:10.​1095/​biolreprod51.​5.​934.PubMedCrossRef
29.
go back to reference Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRef Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRef
31.
go back to reference Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(Pt 22):5257–68. doi:10.1242/jcs.02644.PubMedCrossRef Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(Pt 22):5257–68. doi:10.​1242/​jcs.​02644.PubMedCrossRef
36.
go back to reference Sudo S, Avsian-Kretchmer O, Wang LS, Hsueh AJ. Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation. J Biol Chem. 2004;279(22):23134–41. doi:10.1074/jbc.M402376200.PubMedCrossRef Sudo S, Avsian-Kretchmer O, Wang LS, Hsueh AJ. Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation. J Biol Chem. 2004;279(22):23134–41. doi:10.​1074/​jbc.​M402376200.PubMedCrossRef
38.
go back to reference Fatehi AN, van den Hurk R, Colenbrander B, Daemen AJ, Van Tol HT, Monteiro RM, et al. Expression of bone morphogenetic protein2 (BMP2), BMP4 and BMP receptors in the bovine ovary but absence of effects of BMP2 and BMP4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development. Theriogenology. 2005;63(3):872–89. doi:10.1016/j.theriogenology.2004.05.013.PubMedCrossRef Fatehi AN, van den Hurk R, Colenbrander B, Daemen AJ, Van Tol HT, Monteiro RM, et al. Expression of bone morphogenetic protein2 (BMP2), BMP4 and BMP receptors in the bovine ovary but absence of effects of BMP2 and BMP4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development. Theriogenology. 2005;63(3):872–89. doi:10.​1016/​j.​theriogenology.​2004.​05.​013.PubMedCrossRef
Metadata
Title
Effect of bone morphogenetic protein-4 on in vitro growth, steroidogenesis and subsequent developmental competence of the oocyte-granulosa cell complex derived from bovine early antral follicles
Authors
Yinghua Yang
Chihiro Kanno
Weiping Huang
Sung-Sik Kang
Yojiro Yanagawa
Masashi Nagano
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2016
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-016-0137-1

Other articles of this Issue 1/2016

Reproductive Biology and Endocrinology 1/2016 Go to the issue