Skip to main content
Top
Published in: Journal of Thrombosis and Thrombolysis 1/2019

01-01-2019

Effect of a new inhibitor of factor Xa zifaxaban, on thrombosis in the inferior vena cava in rabbits

Authors: Xiaomiao Qiu, Junjun Zhou, Weiting Wang, Zhuanyou Zhao, Lida Tang, Shuangyong Sun

Published in: Journal of Thrombosis and Thrombolysis | Issue 1/2019

Login to get access

Abstract

In recent years, oral factor Xa inhibitors have become a research focus as anticoagulant drugs. Zifaxaban is the first oral FXa inhibitor to enter clinical trials in China. The aim of this study was to determine the inhibitory effect of zifaxaban on thrombosisthrough a model ofinferior vena cava (IVC) thrombosis in rabbits. IVC thrombosis model was established by electrical injury and stenosis, and zifaxaban was administered (p.o.) for 5 consecutive days, then coagulation indicators and bleeding were observed. The results showed that zifaxaban had obvious inhibitory effects on FXa, and had a significant inhibitory effect on IVC thrombosis induced by electrical damage and stenosis. The effect of zifaxaban was similar to that of rivaroxaban, but the bleeding side-effects of zifaxaban were less severe than those of rivaroxaban. Zifaxaban could prolong the prothrombin time and activated partial thromboplastin time of plasma similar to that of other oral FXa inhibitors. Zifaxaban had a significant inhibitory effect on FXa, but it had no obvious effect on other coagulation factors, major anticoagulant factors or fibrinolytic indices. Our results suggest that zifaxaban had specific inhibitory effects on FXa and inhibited IVC thrombosis in rabbits with its hemorrhagic effect was less than that of rivaroxaban. Zifaxaban is ecpected to be developed as a new drug for the prevention of deep venous thrombosis, providing more medication options for patients with such disease, more research is required to support it in the future.
Literature
1.
go back to reference Turpie AG, Esmon C (2011) Venous and arterial thrombosis–pathogenesis and the rationale for anticoagulation. Thromb Haemost 105(4):586–596PubMed Turpie AG, Esmon C (2011) Venous and arterial thrombosis–pathogenesis and the rationale for anticoagulation. Thromb Haemost 105(4):586–596PubMed
2.
go back to reference Rico JIA, Pitarch JVL, Rocha E (2010) Overview of venous thromboembolism. Drugs 70(2 Suppl):3–10 Rico JIA, Pitarch JVL, Rocha E (2010) Overview of venous thromboembolism. Drugs 70(2 Suppl):3–10
3.
go back to reference Popuri RK, Vedantham S (2011) The role of thrombolysis in the clinical management of deep vein thrombosis. Arterioscler Thromb Vasc Biol 31(3):479–484PubMedPubMedCentral Popuri RK, Vedantham S (2011) The role of thrombolysis in the clinical management of deep vein thrombosis. Arterioscler Thromb Vasc Biol 31(3):479–484PubMedPubMedCentral
4.
go back to reference Colwell CW Jr (2007) Rationale for thromboprophylaxis in lower joint arthroplasty. Am J Orthop (Belle Mead NJ) 36(9 Suppl):11–13 Colwell CW Jr (2007) Rationale for thromboprophylaxis in lower joint arthroplasty. Am J Orthop (Belle Mead NJ) 36(9 Suppl):11–13
5.
go back to reference Kearon C, Akl EA, Comerota AJ et al (2012) Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of chest physicians evidence-based clinical practice guidelines. Chest 141(2 Suppl):e419S–e496SPubMedPubMedCentral Kearon C, Akl EA, Comerota AJ et al (2012) Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of chest physicians evidence-based clinical practice guidelines. Chest 141(2 Suppl):e419S–e496SPubMedPubMedCentral
6.
go back to reference Agnelli G, Becattini C, Franco L (2013) New oral anticoagulants for the treatment of venous thromboembolism. Best Pract Res Clin Haematol 26(2):151–161PubMed Agnelli G, Becattini C, Franco L (2013) New oral anticoagulants for the treatment of venous thromboembolism. Best Pract Res Clin Haematol 26(2):151–161PubMed
7.
go back to reference Rico JIA, Pitarch JVL, Fernandez JAP (2010) Topical issues in venous thromboembolism. Drugs 70(2 Suppl):11–18 Rico JIA, Pitarch JVL, Fernandez JAP (2010) Topical issues in venous thromboembolism. Drugs 70(2 Suppl):11–18
8.
go back to reference Hwang HG, Koo SM, Uh ST et al (2017) The perioperative management of antithrombotic therapies using enoxaparin. J Korean Med Sci 32(6):942–947PubMedPubMedCentral Hwang HG, Koo SM, Uh ST et al (2017) The perioperative management of antithrombotic therapies using enoxaparin. J Korean Med Sci 32(6):942–947PubMedPubMedCentral
9.
go back to reference Nafee T, Aslam A, Chi G et al (2017) Andexanet alfa for the reversal of anticoagulant activity in patients treated with direct and indirect factor Xa inhibitors. Expert Rev Cardiovasc Ther 15(4):237–245PubMed Nafee T, Aslam A, Chi G et al (2017) Andexanet alfa for the reversal of anticoagulant activity in patients treated with direct and indirect factor Xa inhibitors. Expert Rev Cardiovasc Ther 15(4):237–245PubMed
10.
go back to reference Kaatz S, Bhansali H, Gibbs J et al (2017) Reversing factor Xa inhibitors—clinical utility of andexanet alfa. J Blood Med 8:141–149PubMedPubMedCentral Kaatz S, Bhansali H, Gibbs J et al (2017) Reversing factor Xa inhibitors—clinical utility of andexanet alfa. J Blood Med 8:141–149PubMedPubMedCentral
11.
go back to reference Fujimoto T, Imaeda Y, Konishi N et al (2010) Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor. J Med Chem 53(9):3517–3531PubMed Fujimoto T, Imaeda Y, Konishi N et al (2010) Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor. J Med Chem 53(9):3517–3531PubMed
12.
go back to reference Samama MM (2011) The mechanism of action of rivaroxaban—an oral, direct Factor Xa inhibitor—compared with other anticoagulants. Thromb Res 127(6):497–504PubMed Samama MM (2011) The mechanism of action of rivaroxaban—an oral, direct Factor Xa inhibitor—compared with other anticoagulants. Thromb Res 127(6):497–504PubMed
13.
go back to reference Perzborn E, Strassburger J, Wilmen A, Pohlmann J et al (2010) In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—an oral, direct factor Xa inhibitor. J Thromb Haemost 3:514–521 Perzborn E, Strassburger J, Wilmen A, Pohlmann J et al (2010) In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—an oral, direct factor Xa inhibitor. J Thromb Haemost 3:514–521
14.
go back to reference Wong PC, Crain EJ, Xin B et al (2008) Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J Thromb Haemost 6(5):820–829PubMed Wong PC, Crain EJ, Xin B et al (2008) Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J Thromb Haemost 6(5):820–829PubMed
15.
go back to reference Iwatsuki Y, Sato T, Moritani Y et al (2011) Biochemical and pharmacological profile of darexaban, an oral direct factor Xa inhibitor. Eur J Pharmacol 673(1–3):49–55PubMed Iwatsuki Y, Sato T, Moritani Y et al (2011) Biochemical and pharmacological profile of darexaban, an oral direct factor Xa inhibitor. Eur J Pharmacol 673(1–3):49–55PubMed
16.
go back to reference Hu X, Xiao Y, Yu C et al (2018) Characterization of a novel selective factor Xa inhibitor, DJT06001, which reduces thrombus formation with low risk of bleeding. Eur J Pharmacol 825:85–91PubMed Hu X, Xiao Y, Yu C et al (2018) Characterization of a novel selective factor Xa inhibitor, DJT06001, which reduces thrombus formation with low risk of bleeding. Eur J Pharmacol 825:85–91PubMed
18.
go back to reference Byrnes JR, Wolberg AS (2017) New findings on venous thrombogenesis. Hamostaseologie 37(1):25–35PubMed Byrnes JR, Wolberg AS (2017) New findings on venous thrombogenesis. Hamostaseologie 37(1):25–35PubMed
19.
go back to reference Keller K, Prochaska JH, Coldewey M et al (2015) History of deep vein thrombosis is a discriminator for concomitant atrial fibrillation in pulmonary embolism. Thromb Res 136(5):899–906PubMed Keller K, Prochaska JH, Coldewey M et al (2015) History of deep vein thrombosis is a discriminator for concomitant atrial fibrillation in pulmonary embolism. Thromb Res 136(5):899–906PubMed
20.
go back to reference Diaz JA, Obi AT, Myers DD Jr et al (2012) Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 32(3):556–562PubMedPubMedCentral Diaz JA, Obi AT, Myers DD Jr et al (2012) Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 32(3):556–562PubMedPubMedCentral
21.
go back to reference Grover SP, Evans CE, Patel AS et al (2016) Assessment of venous thrombosis in animal models. Arterioscler Thromb Vasc Biol 36(2):245–252PubMed Grover SP, Evans CE, Patel AS et al (2016) Assessment of venous thrombosis in animal models. Arterioscler Thromb Vasc Biol 36(2):245–252PubMed
22.
go back to reference Albadawi H, Witting AA, Pershad Y et al (2017) Animal models of venous thrombosis. Cardiovasc Diagn Ther 7(Suppl 3):S197–S206PubMedPubMedCentral Albadawi H, Witting AA, Pershad Y et al (2017) Animal models of venous thrombosis. Cardiovasc Diagn Ther 7(Suppl 3):S197–S206PubMedPubMedCentral
23.
go back to reference Diaz JA, Alvarado CM, Wrobleski SK et al (2013) The electrolytic inferior vena cava model (EIM) to study thrombogenesis and thrombus resolution with continuous blood flow in the mouse. Thromb Haemost 109(6):1158–1169PubMedPubMedCentral Diaz JA, Alvarado CM, Wrobleski SK et al (2013) The electrolytic inferior vena cava model (EIM) to study thrombogenesis and thrombus resolution with continuous blood flow in the mouse. Thromb Haemost 109(6):1158–1169PubMedPubMedCentral
24.
go back to reference Diaz JA, Wrobleski SK, Hawley AE et al (2011) Electrolytic inferior vena cava model (EIM) of venous thrombosis. J Vis Exp 12(53):e2737 Diaz JA, Wrobleski SK, Hawley AE et al (2011) Electrolytic inferior vena cava model (EIM) of venous thrombosis. J Vis Exp 12(53):e2737
25.
go back to reference Lip GY, Pan X, Kamble S et al (2016) Major bleeding risk among non-valvular atrial fibrillation patients initiated on apixaban, dabigatran, rivaroxaban or warfarin: a “real-world” observational study in the United States. Int J Clin Pract 70(9):752–763PubMedPubMedCentral Lip GY, Pan X, Kamble S et al (2016) Major bleeding risk among non-valvular atrial fibrillation patients initiated on apixaban, dabigatran, rivaroxaban or warfarin: a “real-world” observational study in the United States. Int J Clin Pract 70(9):752–763PubMedPubMedCentral
26.
go back to reference Norby FL, Bengtson LGS, Lutsey PL et al (2017) Comparative effectiveness of rivaroxaban versus warfarin or dabigatran for the treatment of patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord 17(1):238PubMedPubMedCentral Norby FL, Bengtson LGS, Lutsey PL et al (2017) Comparative effectiveness of rivaroxaban versus warfarin or dabigatran for the treatment of patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord 17(1):238PubMedPubMedCentral
27.
go back to reference Mueck W, Stampfuss J, Kubitza D et al (2014) Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet 53(1):1–16PubMed Mueck W, Stampfuss J, Kubitza D et al (2014) Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet 53(1):1–16PubMed
28.
go back to reference Wong PC, Pinto DJ, Zhang D (2011) Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J Thromb Thromb 31(4):478–492 Wong PC, Pinto DJ, Zhang D (2011) Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J Thromb Thromb 31(4):478–492
Metadata
Title
Effect of a new inhibitor of factor Xa zifaxaban, on thrombosis in the inferior vena cava in rabbits
Authors
Xiaomiao Qiu
Junjun Zhou
Weiting Wang
Zhuanyou Zhao
Lida Tang
Shuangyong Sun
Publication date
01-01-2019
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis / Issue 1/2019
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-018-1743-x

Other articles of this Issue 1/2019

Journal of Thrombosis and Thrombolysis 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine