Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2013

Open Access 01-12-2013 | Research

ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach

Authors: Johannes W Krug, Georg Rose, Gari D Clifford, Julien Oster

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2013

Login to get access

Abstract

Background

In Cardiovascular Magnetic Resonance (CMR), the synchronization of image acquisition with heart motion is performed in clinical practice by processing the electrocardiogram (ECG). The ECG-based synchronization is well established for MR scanners with magnetic fields up to 3 T. However, this technique is prone to errors in ultra high field environments, e.g. in 7 T MR scanners as used in research applications. The high magnetic fields cause severe magnetohydrodynamic (MHD) effects which disturb the ECG signal. Image synchronization is thus less reliable and yields artefacts in CMR images.

Methods

A strategy based on Independent Component Analysis (ICA) was pursued in this work to enhance the ECG contribution and attenuate the MHD effect. ICA was applied to 12-lead ECG signals recorded inside a 7 T MR scanner. An automatic source identification procedure was proposed to identify an independent component (IC) dominated by the ECG signal. The identified IC was then used for detecting the R-peaks. The presented ICA-based method was compared to other R-peak detection methods using 1) the raw ECG signal, 2) the raw vectorcardiogram (VCG), 3) the state-of-the-art gating technique based on the VCG, 4) an updated version of the VCG-based approach and 5) the ICA of the VCG.

Results

ECG signals from eight volunteers were recorded inside the MR scanner. Recordings with an overall length of 87 min accounting for 5457 QRS complexes were available for the analysis. The records were divided into a training and a test dataset. In terms of R-peak detection within the test dataset, the proposed ICA-based algorithm achieved a detection performance with an average sensitivity (Se) of 99.2%, a positive predictive value (+P) of 99.1%, with an average trigger delay and jitter of 5.8 ms and 5.0 ms, respectively. Long term stability of the demixing matrix was shown based on two measurements of the same subject, each being separated by one year, whereas an averaged detection performance of Se = 99.4% and +P = 99.7% was achieved.
Compared to the state-of-the-art VCG-based gating technique at 7 T, the proposed method increased the sensitivity and positive predictive value within the test dataset by 27.1% and 42.7%, respectively.

Conclusions

The presented ICA-based method allows the estimation and identification of an IC dominated by the ECG signal. R-peak detection based on this IC outperforms the state-of-the-art VCG-based technique in a 7 T MR scanner environment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Attili AK, Schuster A, Nagel E, Reiber JH, van der Geest RJtitle=Quantification in cardiac MRI: advances in image acquisition and processing: Int J Cardiovasc Imaging. 2010, 26: 27-40.PubMedCentralCrossRefPubMed Attili AK, Schuster A, Nagel E, Reiber JH, van der Geest RJtitle=Quantification in cardiac MRI: advances in image acquisition and processing: Int J Cardiovasc Imaging. 2010, 26: 27-40.PubMedCentralCrossRefPubMed
2.
go back to reference Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol. 2010, 20 (12): 2806-16. 10.1007/s00330-010-1902-8.PubMedCentralCrossRefPubMed Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol. 2010, 20 (12): 2806-16. 10.1007/s00330-010-1902-8.PubMedCentralCrossRefPubMed
3.
go back to reference van Ooij P, Kleinloog R, Zwanenburg J, Visser F, Luijten P, Barker A, Markl M, Nederveen A, Majoie C, Regli L, et al: Improved depiction of hemodynamics in intracranial aneurysms by 4D flow MRI at 7T compared to 3T. J Cardiovasc Magn Reson. 2013, 15 (Suppl 1): W12-10.1186/1532-429X-15-S1-W12.PubMedCentralCrossRef van Ooij P, Kleinloog R, Zwanenburg J, Visser F, Luijten P, Barker A, Markl M, Nederveen A, Majoie C, Regli L, et al: Improved depiction of hemodynamics in intracranial aneurysms by 4D flow MRI at 7T compared to 3T. J Cardiovasc Magn Reson. 2013, 15 (Suppl 1): W12-10.1186/1532-429X-15-S1-W12.PubMedCentralCrossRef
4.
go back to reference Scott A, Keegan J, Firmin D: Motion in cardiovascular MR imaging. Radiology. 2009, 250 (2): 331-51. 10.1148/radiol.2502071998.CrossRefPubMed Scott A, Keegan J, Firmin D: Motion in cardiovascular MR imaging. Radiology. 2009, 250 (2): 331-51. 10.1148/radiol.2502071998.CrossRefPubMed
5.
go back to reference Fischer S, Wickline S, Lorenz C: Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magnet Reson Med. 1999, 42 (2): 361-70. 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9.CrossRef Fischer S, Wickline S, Lorenz C: Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magnet Reson Med. 1999, 42 (2): 361-70. 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9.CrossRef
6.
go back to reference Nacif M, Zavodni A, Kawel N, Choi E, Lima J, Bluemke D: Cardiac magnetic resonance imaging and its electrocardiographs (ECG): tips and tricks. Int J Cardiovasc Imaging. 2011, 28 (6): 1-11. Nacif M, Zavodni A, Kawel N, Choi E, Lima J, Bluemke D: Cardiac magnetic resonance imaging and its electrocardiographs (ECG): tips and tricks. Int J Cardiovasc Imaging. 2011, 28 (6): 1-11.
7.
go back to reference Rubin J, Brian Fowlkes J, Prince M, Rhee R, Chenevert T: Doppler US gating of cardiac MR imaging. Acad Radiol. 2000, 7 (12): 1116-22. 10.1016/S1076-6332(00)80065-3.CrossRefPubMed Rubin J, Brian Fowlkes J, Prince M, Rhee R, Chenevert T: Doppler US gating of cardiac MR imaging. Acad Radiol. 2000, 7 (12): 1116-22. 10.1016/S1076-6332(00)80065-3.CrossRefPubMed
8.
go back to reference Nijm G, Sahakian A, Swiryn S, Carr J, Sheehan J, Larson A: Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms. J Magn Reson Imaging. 2008, 28 (3): 767-72. 10.1002/jmri.21514.PubMedCentralCrossRefPubMed Nijm G, Sahakian A, Swiryn S, Carr J, Sheehan J, Larson A: Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms. J Magn Reson Imaging. 2008, 28 (3): 767-72. 10.1002/jmri.21514.PubMedCentralCrossRefPubMed
9.
go back to reference Frauenrath T, Hezel F, Renz W, de Geyer dÓrth T, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz-Menger J, Niendorf T: Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson. 2010, 12 (67): 1-14. Frauenrath T, Hezel F, Renz W, de Geyer dÓrth T, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz-Menger J, Niendorf T: Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson. 2010, 12 (67): 1-14.
10.
go back to reference Keltner JR, Roos MS, Brakeman PR, Budinger TF: Magnetohydrodynamics of Blood Flow. Magnet Reson Med. 1990, 16: 139-49. 10.1002/mrm.1910160113.CrossRef Keltner JR, Roos MS, Brakeman PR, Budinger TF: Magnetohydrodynamics of Blood Flow. Magnet Reson Med. 1990, 16: 139-49. 10.1002/mrm.1910160113.CrossRef
12.
go back to reference Martin V, Drochon A, Fokapu O, Gerbeau J: MagnetoHemoDynamics Effect on Electrocardiograms. FIMH, Lect Notes Comput Sc. 2011, 6666: 325-32.CrossRef Martin V, Drochon A, Fokapu O, Gerbeau J: MagnetoHemoDynamics Effect on Electrocardiograms. FIMH, Lect Notes Comput Sc. 2011, 6666: 325-32.CrossRef
13.
go back to reference Chia J, Fischer S, Wickline S, Lorenz C: Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging. 2000, 12 (5): 678-88. 10.1002/1522-2586(200011)12:5<678::AID-JMRI4>3.0.CO;2-5.CrossRefPubMed Chia J, Fischer S, Wickline S, Lorenz C: Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging. 2000, 12 (5): 678-88. 10.1002/1522-2586(200011)12:5<678::AID-JMRI4>3.0.CO;2-5.CrossRefPubMed
14.
go back to reference Brandts A, Westenberg J, Versluis M, Kroft L, Smith N, Webb A, de Roos A: Quantitative assessment of left ventricular function in humans at 7 T. Magnet Reson Med. 2010, 64 (5): 1471-7. 10.1002/mrm.22529.CrossRef Brandts A, Westenberg J, Versluis M, Kroft L, Smith N, Webb A, de Roos A: Quantitative assessment of left ventricular function in humans at 7 T. Magnet Reson Med. 2010, 64 (5): 1471-7. 10.1002/mrm.22529.CrossRef
15.
go back to reference Krug J, Rose G, Stucht D, Clifford G, Oster J: Limitations of VCG based gating methods in ultra high field cardiac MRI. J Cardiovasc Magn Reson. 2013, 15 (Suppl 1): W19-10.1186/1532-429X-15-S1-W19.PubMedCentralCrossRef Krug J, Rose G, Stucht D, Clifford G, Oster J: Limitations of VCG based gating methods in ultra high field cardiac MRI. J Cardiovasc Magn Reson. 2013, 15 (Suppl 1): W19-10.1186/1532-429X-15-S1-W19.PubMedCentralCrossRef
16.
go back to reference Hyvarinen A: Survey on independent component analysis. Neural Comput Surv. 1999, 2 (4): 94-128. Hyvarinen A: Survey on independent component analysis. Neural Comput Surv. 1999, 2 (4): 94-128.
17.
go back to reference Comon P, Jutten C: Handbook of Blind Source Separation: Independent component analysis and applications. 2010, New York: Academic Press Comon P, Jutten C: Handbook of Blind Source Separation: Independent component analysis and applications. 2010, New York: Academic Press
18.
go back to reference Sameni R, Jutten C, Shamsollahi MB: What ICA provides for ECG processing: Application to noninvasive fetal ECG extraction. Proc Int Symp Signal Process Inf Technol (ISSPIT). 2006, Canada: Vancouver, 656-661. Sameni R, Jutten C, Shamsollahi MB: What ICA provides for ECG processing: Application to noninvasive fetal ECG extraction. Proc Int Symp Signal Process Inf Technol (ISSPIT). 2006, Canada: Vancouver, 656-661.
19.
go back to reference He T, Clifford G, Tarassenko L: Application of ICA in Removing Artefacts from the ECG. Neural Comput Appl. 2006, 15 (2): 105-16. 10.1007/s00521-005-0013-y.CrossRef He T, Clifford G, Tarassenko L: Application of ICA in Removing Artefacts from the ECG. Neural Comput Appl. 2006, 15 (2): 105-16. 10.1007/s00521-005-0013-y.CrossRef
20.
go back to reference Phlypo R, Zarzoso V, Comon P, Dasseler Y, Lemahieu I: Extraction of atrial activity from the ECG by spectrally constrained ICA based on kurtosis sign. Proc 7th Int Conf ICA, LNCS. 2007, 4666: 641-8. Phlypo R, Zarzoso V, Comon P, Dasseler Y, Lemahieu I: Extraction of atrial activity from the ECG by spectrally constrained ICA based on kurtosis sign. Proc 7th Int Conf ICA, LNCS. 2007, 4666: 641-8.
21.
go back to reference Oster J, Pietquin O, Abächerli R, Kraemer M, Felblinger J: Independent component analysis-based artefact reduction: application to the electrocardiogram for improved magnetic resonance imaging triggering. Physiol Meas. 2009, 30: 1381-97. 10.1088/0967-3334/30/12/007.CrossRefPubMed Oster J, Pietquin O, Abächerli R, Kraemer M, Felblinger J: Independent component analysis-based artefact reduction: application to the electrocardiogram for improved magnetic resonance imaging triggering. Physiol Meas. 2009, 30: 1381-97. 10.1088/0967-3334/30/12/007.CrossRefPubMed
22.
go back to reference Krug J, Rose G: Comput Cardiol. 2012, 38: 769-72. Krug J, Rose G: Comput Cardiol. 2012, 38: 769-72.
23.
go back to reference Hyvarinen A: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 1999, 10 (3): 626-34. 10.1109/72.761722.CrossRefPubMed Hyvarinen A: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 1999, 10 (3): 626-34. 10.1109/72.761722.CrossRefPubMed
24.
go back to reference Clifford GD: Signal processing methods for heart rate variability [Phd thesis]. England: University of Oxford; 2002 Clifford GD: Signal processing methods for heart rate variability [Phd thesis]. England: University of Oxford; 2002
25.
go back to reference Lilliefors HW: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967, 62 (318): 399-402. 10.1080/01621459.1967.10482916.CrossRef Lilliefors HW: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967, 62 (318): 399-402. 10.1080/01621459.1967.10482916.CrossRef
26.
go back to reference Edenbrandt L, Pahlm O: Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J Electrocardiol. 1988, 21 (4): 361-367. 10.1016/0022-0736(88)90113-6.CrossRefPubMed Edenbrandt L, Pahlm O: Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J Electrocardiol. 1988, 21 (4): 361-367. 10.1016/0022-0736(88)90113-6.CrossRefPubMed
27.
go back to reference American National Standard: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI/ISO EC57:1998/(R)2008. Arlington (VA), 1998 American National Standard: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI/ISO EC57:1998/(R)2008. Arlington (VA), 1998
28.
go back to reference Krug J, Rose G, Stucht D, Clifford G, Oster J: Filtering the magnetohydrodynamic effect from 12-lead ECG signals using independent component analysis. Comput Cardiol. 2012, 39: 590-93. Krug J, Rose G, Stucht D, Clifford G, Oster J: Filtering the magnetohydrodynamic effect from 12-lead ECG signals using independent component analysis. Comput Cardiol. 2012, 39: 590-93.
29.
go back to reference Lentner C: Geigy scientific tables: vol 5. Heart and circulation. 1990, West Caldwell (NJ): CIBA-Geigy AG Lentner C: Geigy scientific tables: vol 5. Heart and circulation. 1990, West Caldwell (NJ): CIBA-Geigy AG
30.
go back to reference Thompson RB, McVeigh ER: Flow-gated phase-contrast MRI using radial acquisitions. Magnet Reson Med. 2004, 52 (3): 598-604. 10.1002/mrm.20187.CrossRef Thompson RB, McVeigh ER: Flow-gated phase-contrast MRI using radial acquisitions. Magnet Reson Med. 2004, 52 (3): 598-604. 10.1002/mrm.20187.CrossRef
31.
go back to reference Kyriakou A, Neufeld E, Szczerba D, Kainz W, Luechinger R, Kozerke S, McGregor R, Kuster N: Patient-specific simulations and measurements of the magneto-hemodynamic effect in human primary vessels. Physiol Meas. 2012, 33: 117-30. 10.1088/0967-3334/33/2/117.CrossRefPubMed Kyriakou A, Neufeld E, Szczerba D, Kainz W, Luechinger R, Kozerke S, McGregor R, Kuster N: Patient-specific simulations and measurements of the magneto-hemodynamic effect in human primary vessels. Physiol Meas. 2012, 33: 117-30. 10.1088/0967-3334/33/2/117.CrossRefPubMed
32.
go back to reference Tse Z, Dumoulin C, Clifford G, Jerosch-Herald M, Kacher D, Kwong R, Stevenson W, Schmidt E: MRI-compatible 12-lead ECGs with MHD separation: application to cardiac MRI gating, physiological monitoring and noninvasive cardiac-output estimation. 2010, Stockholm: Sweden Tse Z, Dumoulin C, Clifford G, Jerosch-Herald M, Kacher D, Kwong R, Stevenson W, Schmidt E: MRI-compatible 12-lead ECGs with MHD separation: application to cardiac MRI gating, physiological monitoring and noninvasive cardiac-output estimation. 2010, Stockholm: Sweden
33.
go back to reference Tse Z, Dumoulin C, Clifford G, Schweitzer J, Qin L, Oster J, Jerosch-Herold M, Kwong R, Michaud G, Stevenson W, Schmidt E: A 1.5T MRI-conditional 12-lead electrocardiogram for MRI and intra-MR intervention. Magnet Reson Med. 2013, Epub ahead of print.http://dx.doi.org/10.1002/mrm.24744, Tse Z, Dumoulin C, Clifford G, Schweitzer J, Qin L, Oster J, Jerosch-Herold M, Kwong R, Michaud G, Stevenson W, Schmidt E: A 1.5T MRI-conditional 12-lead electrocardiogram for MRI and intra-MR intervention. Magnet Reson Med. 2013, Epub ahead of print.http://​dx.​doi.​org/​10.​1002/​mrm.​24744,
34.
go back to reference Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C, et al: Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magnet Reson Med. 1999, 41 (4): 715-21. 10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7.CrossRef Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C, et al: Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magnet Reson Med. 1999, 41 (4): 715-21. 10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7.CrossRef
35.
go back to reference Oster J, Pietquin O, Kraemer M, Felblinger J: Nonlinear Bayesian filtering for denoising of electrocardiograms acquired in a magnetic resonance environment. IEEE Trans Biomed Eng. 2010, 57 (7): 1628-38.CrossRefPubMed Oster J, Pietquin O, Kraemer M, Felblinger J: Nonlinear Bayesian filtering for denoising of electrocardiograms acquired in a magnetic resonance environment. IEEE Trans Biomed Eng. 2010, 57 (7): 1628-38.CrossRefPubMed
36.
go back to reference Schmidt EJ, Clifford G, Jerosch-Herald M, Kwong RY, Epstein L, Kacher D, Dumoulin CL, Jolesz F: MRI-compatible 12-lead ECG: improved MHD suppression, ischemia monitoring, and non-invasive cardiac output. 2009, Hawaii: Honolulu Schmidt EJ, Clifford G, Jerosch-Herald M, Kwong RY, Epstein L, Kacher D, Dumoulin CL, Jolesz F: MRI-compatible 12-lead ECG: improved MHD suppression, ischemia monitoring, and non-invasive cardiac output. 2009, Hawaii: Honolulu
Metadata
Title
ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach
Authors
Johannes W Krug
Georg Rose
Gari D Clifford
Julien Oster
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2013
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-15-104

Other articles of this Issue 1/2013

Journal of Cardiovascular Magnetic Resonance 1/2013 Go to the issue