Skip to main content
Top
Published in: Angiogenesis 4/2019

Open Access 01-11-2019 | EBM | Original Paper

Revascularization after angiogenesis inhibition favors new sprouting over abandoned vessel reuse

Authors: Anthony Mukwaya, Pierfrancesco Mirabelli, Anton Lennikov, Muthukumar Thangavelu, Maria Ntzouni, Lasse Jensen, Beatrice Peebo, Neil Lagali

Published in: Angiogenesis | Issue 4/2019

Login to get access

Abstract

Inhibiting pathologic angiogenesis can halt disease progression, but such inhibition may offer only a temporary benefit, followed by tissue revascularization after treatment stoppage. This revascularization, however, occurs by largely unknown phenotypic changes in pathologic vessels. To investigate the dynamics of vessel reconfiguration during revascularization, we developed a model of reversible murine corneal angiogenesis permitting longitudinal examination of the same vasculature. Following 30 days of angiogenesis inhibition, two types of vascular structure were evident: partially regressed persistent vessels that were degenerate and barely functional, and fully regressed, non-functional empty basement membrane sleeves (ebms). While persistent vessels maintained a limited flow and retained collagen IV+ basement membrane, CD31+ endothelial cells (EC), and α-SMA+ pericytes, ebms were acellular and expressed only collagen IV. Upon terminating angiogenesis inhibition, transmission electron microscopy and live imaging revealed that revascularization ensued by a rapid reversal of EC degeneracy in persistent vessels, facilitating their phenotypic normalization, vasodilation, increased flow, and subsequent new angiogenic sprouting. Conversely, ebms were irreversibly sealed from the circulation by excess collagen IV deposition that inhibited EC migration and prevented their reuse. Fully and partially regressed vessels therefore have opposing roles during revascularization, where fully regressed vessels inhibit new sprouting while partially regressed persistent vessels rapidly reactivate and serve as the source of continued pathologic angiogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Group, C.R. (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364(20):1897–1908CrossRef Group, C.R. (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364(20):1897–1908CrossRef
2.
go back to reference Berg K et al (2015) Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology 122(1):146–152CrossRefPubMed Berg K et al (2015) Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology 122(1):146–152CrossRefPubMed
3.
go back to reference Mirshahi A et al (2008) Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized double-masked clinical trial. Eur J Ophthalmol 18(2):263–269CrossRefPubMed Mirshahi A et al (2008) Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized double-masked clinical trial. Eur J Ophthalmol 18(2):263–269CrossRefPubMed
5.
go back to reference Dastjerdi MH et al (2009) Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol 127(4):381–389CrossRefPubMedPubMedCentral Dastjerdi MH et al (2009) Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol 127(4):381–389CrossRefPubMedPubMedCentral
6.
go back to reference Xu L et al (2014) COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci Transl Med 6(242):242ra84-242ra84CrossRef Xu L et al (2014) COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci Transl Med 6(242):242ra84-242ra84CrossRef
7.
go back to reference Wang Z et al (2015) Broad targeting of angiogenesis for cancer prevention and therapy. In Seminars in cancer biology. Elsevier Wang Z et al (2015) Broad targeting of angiogenesis for cancer prevention and therapy. In Seminars in cancer biology. Elsevier
9.
12.
go back to reference Huang D et al (2015) OCT Angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment. Retina (Philadelphia, PA) 35(11):2260CrossRef Huang D et al (2015) OCT Angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment. Retina (Philadelphia, PA) 35(11):2260CrossRef
13.
go back to reference Moreno-Miralles I et al (2011) BMPER regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced retinopathy. Arterioscler Thromb Vasc Biol 31(10):2216CrossRefPubMedPubMedCentral Moreno-Miralles I et al (2011) BMPER regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced retinopathy. Arterioscler Thromb Vasc Biol 31(10):2216CrossRefPubMedPubMedCentral
14.
go back to reference Qi Y et al (2014) Retinal ischemia/reperfusion injury is mediated by Toll-like receptor 4 activation of NLRP3 inflammasomes. Invest Ophthalmol Vis Sci 55(9):5466–5475CrossRefPubMed Qi Y et al (2014) Retinal ischemia/reperfusion injury is mediated by Toll-like receptor 4 activation of NLRP3 inflammasomes. Invest Ophthalmol Vis Sci 55(9):5466–5475CrossRefPubMed
15.
go back to reference Schmidinger G et al (2011) Repeated intravitreal bevacizumab (Avastin®) treatment of persistent new vessels in proliferative diabetic retinopathy after complete panretinal photocoagulation. Acta Ophthalmol 89(1):76–81CrossRefPubMed Schmidinger G et al (2011) Repeated intravitreal bevacizumab (Avastin®) treatment of persistent new vessels in proliferative diabetic retinopathy after complete panretinal photocoagulation. Acta Ophthalmol 89(1):76–81CrossRefPubMed
16.
go back to reference Shah VP, Freund KB (2013) Growth of type 1 neovascularization following cessation of anti-vascular endothelial growth factor therapy as a possible explanation for treatment resistance. JAMA Ophthalmol 131(7):967–969CrossRefPubMed Shah VP, Freund KB (2013) Growth of type 1 neovascularization following cessation of anti-vascular endothelial growth factor therapy as a possible explanation for treatment resistance. JAMA Ophthalmol 131(7):967–969CrossRefPubMed
17.
go back to reference Padhi T et al (2016) Serial evaluation of retinal vascular changes in infants treated with intravitreal bevacizumab for aggressive posterior retinopathy of prematurity in zone I. Eye 30(3):392CrossRefPubMed Padhi T et al (2016) Serial evaluation of retinal vascular changes in infants treated with intravitreal bevacizumab for aggressive posterior retinopathy of prematurity in zone I. Eye 30(3):392CrossRefPubMed
18.
go back to reference Matsumoto Y et al (2007) Rebound macular edema following bevacizumab (Avastin) therapy for retinal venous occlusive disease. Retina 27(4):426–431CrossRefPubMed Matsumoto Y et al (2007) Rebound macular edema following bevacizumab (Avastin) therapy for retinal venous occlusive disease. Retina 27(4):426–431CrossRefPubMed
19.
go back to reference Cacheux W et al (2008) Reversible tumor growth acceleration following bevacizumab interruption in metastatic colorectal cancer patients scheduled for surgery. Ann Oncol 19(9):1659–1661CrossRefPubMed Cacheux W et al (2008) Reversible tumor growth acceleration following bevacizumab interruption in metastatic colorectal cancer patients scheduled for surgery. Ann Oncol 19(9):1659–1661CrossRefPubMed
20.
go back to reference Griffioen AW et al (2012) Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clinical Cancer Res 18(14):3961–3971CrossRef Griffioen AW et al (2012) Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clinical Cancer Res 18(14):3961–3971CrossRef
21.
go back to reference La Vine DB et al (2010) Frequent dose interruptions are required for patients receiving oral kinase inhibitor therapy for advanced renal cell carcinoma. Am J Clin Oncol 33(3):217–220PubMed La Vine DB et al (2010) Frequent dose interruptions are required for patients receiving oral kinase inhibitor therapy for advanced renal cell carcinoma. Am J Clin Oncol 33(3):217–220PubMed
22.
go back to reference Abdel-Qadir H et al (2017) Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev 53:120–127CrossRefPubMed Abdel-Qadir H et al (2017) Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev 53:120–127CrossRefPubMed
23.
go back to reference Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Dev Ther 10:1857CrossRef Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Dev Ther 10:1857CrossRef
25.
go back to reference Hollingworth W et al (2017) A longitudinal study to assess the frequency and cost of antivascular endothelial therapy, and inequalities in access, in England between 2005 and 2015. BMJ Open 7(10):e018289CrossRefPubMedPubMedCentral Hollingworth W et al (2017) A longitudinal study to assess the frequency and cost of antivascular endothelial therapy, and inequalities in access, in England between 2005 and 2015. BMJ Open 7(10):e018289CrossRefPubMedPubMedCentral
26.
go back to reference Vracko R (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure: a review. Am J Pathol 77(2):313PubMedCentral Vracko R (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure: a review. Am J Pathol 77(2):313PubMedCentral
27.
go back to reference Vracko R, Benditt EP (1972) Basal lamina: the scaffold for orderly cell replacement: observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 55(2):406–419CrossRefPubMedPubMedCentral Vracko R, Benditt EP (1972) Basal lamina: the scaffold for orderly cell replacement: observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 55(2):406–419CrossRefPubMedPubMedCentral
28.
go back to reference Irvine AR, Wood IS (1987) Radiation retinopathy as an experimental model for ischemic proliferative retinopathy and rubeosis iridis. Am J Ophthalmol 103(6):790–797CrossRefPubMed Irvine AR, Wood IS (1987) Radiation retinopathy as an experimental model for ischemic proliferative retinopathy and rubeosis iridis. Am J Ophthalmol 103(6):790–797CrossRefPubMed
29.
go back to reference Hamilton A et al (1975) Retinal new vessel formation following experimental vein occlusion. Exp Eye Res 20(6):493–497CrossRefPubMed Hamilton A et al (1975) Retinal new vessel formation following experimental vein occlusion. Exp Eye Res 20(6):493–497CrossRefPubMed
30.
go back to reference Marín-Juez R et al (2016) Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc Natl Acad Sci USA 113(40):11237–11242CrossRefPubMedPubMedCentral Marín-Juez R et al (2016) Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc Natl Acad Sci USA 113(40):11237–11242CrossRefPubMedPubMedCentral
31.
go back to reference Becherirat S et al (2018) Discontinuous schedule of bevacizumab in colorectal cancer induces accelerated tumor growth and phenotypic changes. Transl Oncol 11(2):406–415CrossRefPubMedPubMedCentral Becherirat S et al (2018) Discontinuous schedule of bevacizumab in colorectal cancer induces accelerated tumor growth and phenotypic changes. Transl Oncol 11(2):406–415CrossRefPubMedPubMedCentral
33.
go back to reference Silva R et al (2018) Treat-and-extend versus monthly regimen in neovascular age-related macular degeneration: results with ranibizumab from the TREND study. Ophthalmology 125(1):57–65CrossRefPubMed Silva R et al (2018) Treat-and-extend versus monthly regimen in neovascular age-related macular degeneration: results with ranibizumab from the TREND study. Ophthalmology 125(1):57–65CrossRefPubMed
34.
go back to reference Cascone T et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma. J Clin Invest 121(4):1313–1328CrossRefPubMedPubMedCentral Cascone T et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma. J Clin Invest 121(4):1313–1328CrossRefPubMedPubMedCentral
35.
go back to reference Welti J et al (2011) Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30(10):1183CrossRefPubMed Welti J et al (2011) Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30(10):1183CrossRefPubMed
36.
go back to reference Shojaei F et al (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70(40):10090–10100CrossRefPubMed Shojaei F et al (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70(40):10090–10100CrossRefPubMed
37.
go back to reference Fischer C et al (2007) Anti-PlGF inhibits growth of VEGF (R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475CrossRefPubMed Fischer C et al (2007) Anti-PlGF inhibits growth of VEGF (R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475CrossRefPubMed
38.
go back to reference Casanovas O et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309CrossRefPubMed Casanovas O et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309CrossRefPubMed
39.
go back to reference Cabral T et al (2017) Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitr 3(1):31CrossRef Cabral T et al (2017) Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitr 3(1):31CrossRef
40.
go back to reference Peruzzi B, Bottaro DP (2006) Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12(12):3657–3660CrossRefPubMed Peruzzi B, Bottaro DP (2006) Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12(12):3657–3660CrossRefPubMed
41.
go back to reference Kim YJ et al (2013) Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α. Int J Cancer 132(1):29–41CrossRefPubMed Kim YJ et al (2013) Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α. Int J Cancer 132(1):29–41CrossRefPubMed
42.
43.
go back to reference Korey M, Peyman G, Berkowitz R (1977) The effect of hypertonic ointments on corneal alkali burns. Ann Ophthalmol 9(11):1383–1387PubMed Korey M, Peyman G, Berkowitz R (1977) The effect of hypertonic ointments on corneal alkali burns. Ann Ophthalmol 9(11):1383–1387PubMed
44.
go back to reference Kenyon BM et al (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37(8):1625–1632PubMed Kenyon BM et al (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37(8):1625–1632PubMed
45.
go back to reference Deutsch TA, Hughes WF (1979) Suppressive effects of indomethacin on thermally induced neovascularization of rabbit corneas. Am J Ophthalmol 87(4):536–540CrossRefPubMed Deutsch TA, Hughes WF (1979) Suppressive effects of indomethacin on thermally induced neovascularization of rabbit corneas. Am J Ophthalmol 87(4):536–540CrossRefPubMed
46.
go back to reference Peebo BB et al (2010) Cellular-level characterization of lymph vessels in live, unlabeled corneas by in vivo confocal microscopy. Invest Ophthalmol Vis Sci 51(2):830–835CrossRefPubMed Peebo BB et al (2010) Cellular-level characterization of lymph vessels in live, unlabeled corneas by in vivo confocal microscopy. Invest Ophthalmol Vis Sci 51(2):830–835CrossRefPubMed
48.
go back to reference Peebo BB et al (2011) Cellular level characterization of capillary regression in inflammatory angiogenesis using an in vivo corneal model. Angiogenesis 14(3):393CrossRefPubMed Peebo BB et al (2011) Cellular level characterization of capillary regression in inflammatory angiogenesis using an in vivo corneal model. Angiogenesis 14(3):393CrossRefPubMed
49.
go back to reference Mirabelli P et al (2014) Early effects of dexamethasone and anti-VEGF therapy in an inflammatory corneal neovascularization model. Exp Eye Res 125:118–127CrossRefPubMed Mirabelli P et al (2014) Early effects of dexamethasone and anti-VEGF therapy in an inflammatory corneal neovascularization model. Exp Eye Res 125:118–127CrossRefPubMed
50.
go back to reference Mukwaya A et al (2018) Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 21(2):395–413CrossRefPubMedPubMedCentral Mukwaya A et al (2018) Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 21(2):395–413CrossRefPubMedPubMedCentral
51.
go back to reference Mukwaya A et al (2019) Repeat corneal neovascularization is characterized by more aggressive inflammation and vessel invasion than in the initial phase. Invest Ophthalmol Vis Sci 60(8):2990–3001CrossRefPubMed Mukwaya A et al (2019) Repeat corneal neovascularization is characterized by more aggressive inflammation and vessel invasion than in the initial phase. Invest Ophthalmol Vis Sci 60(8):2990–3001CrossRefPubMed
52.
go back to reference Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987CrossRefPubMed Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987CrossRefPubMed
53.
go back to reference Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417CrossRefPubMed Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417CrossRefPubMed
54.
go back to reference Goel S, Wong AH-K, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2(3):a006486CrossRefPubMedPubMedCentral Goel S, Wong AH-K, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2(3):a006486CrossRefPubMedPubMedCentral
55.
go back to reference Bartel H, Lametschwandtner A (2000) Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study. J Anat 197(2):157–166CrossRefPubMedPubMedCentral Bartel H, Lametschwandtner A (2000) Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study. J Anat 197(2):157–166CrossRefPubMedPubMedCentral
56.
go back to reference Jain RK et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95(18):10820–10825CrossRefPubMedPubMedCentral Jain RK et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95(18):10820–10825CrossRefPubMedPubMedCentral
57.
go back to reference Brown WR (2010) A review of string vessels or collapsed, empty basement membrane tubes. J Alzheimer’s Dis 21(3):725–739CrossRef Brown WR (2010) A review of string vessels or collapsed, empty basement membrane tubes. J Alzheimer’s Dis 21(3):725–739CrossRef
58.
go back to reference Ausprunk D (1978) The sequence of events in the regression of corneal capillaries. Lab Invest 38:284–294PubMed Ausprunk D (1978) The sequence of events in the regression of corneal capillaries. Lab Invest 38:284–294PubMed
59.
go back to reference Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harbor Perspec Biol 3(8):a005090CrossRef Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harbor Perspec Biol 3(8):a005090CrossRef
60.
go back to reference Stenmark K, Mecham R (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59(1):89–144CrossRefPubMed Stenmark K, Mecham R (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59(1):89–144CrossRefPubMed
61.
go back to reference Stratman AN et al (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101CrossRefPubMedPubMedCentral Stratman AN et al (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101CrossRefPubMedPubMedCentral
62.
go back to reference Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80CrossRefPubMed Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80CrossRefPubMed
64.
go back to reference Colorado PC et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Can Res 60(9):2520–2526 Colorado PC et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Can Res 60(9):2520–2526
65.
go back to reference Peebo BB et al (2011) Time-lapse in vivo imaging of corneal angiogenesis: the role of inflammatory cells in capillary sprouting. Invest Ophthalmol Vis Sci 52(6):3060–3068CrossRef Peebo BB et al (2011) Time-lapse in vivo imaging of corneal angiogenesis: the role of inflammatory cells in capillary sprouting. Invest Ophthalmol Vis Sci 52(6):3060–3068CrossRef
66.
go back to reference Benjamin LE et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165CrossRefPubMedPubMedCentral Benjamin LE et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165CrossRefPubMedPubMedCentral
Metadata
Title
Revascularization after angiogenesis inhibition favors new sprouting over abandoned vessel reuse
Authors
Anthony Mukwaya
Pierfrancesco Mirabelli
Anton Lennikov
Muthukumar Thangavelu
Maria Ntzouni
Lasse Jensen
Beatrice Peebo
Neil Lagali
Publication date
01-11-2019
Publisher
Springer Netherlands
Keyword
EBM
Published in
Angiogenesis / Issue 4/2019
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-019-09679-9

Other articles of this Issue 4/2019

Angiogenesis 4/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine