Skip to main content
Top
Published in: Current Bladder Dysfunction Reports 4/2016

01-12-2016 | Neurogenic Bladder (C Powell, Section Editor)

Early Sacral Neuromodulation in Spinal Cord Injury—Can It Regenerate Nerves?

Authors: Joshua A. Cohn, Melissa R. Kaufman, Roger R. Dmochowski, Casey G. Kowalik, Douglas F. Milam, W. Stuart Reynolds

Published in: Current Bladder Dysfunction Reports | Issue 4/2016

Login to get access

Abstract

The extent of neurologic deficit in spinal cord injury (SCI) is dependent on the primary injury, biologic responses to injury, including inflammation, edema, and scar formation, and neural restructuring. During the recovery phase of SCI, which follows a period of spinal shock lasting weeks to up to 2 years, uninhibited spinal reflexes result in detrusor overactivity with dyssynergia of the urethral sphincter, associated with progressive lower urinary tract dysfunction and potentially upper tract deterioration. Minimization of secondary injury following acute SCI and optimization of nerve regeneration may maximize functional recovery and limit end organ dysfunction, including of the lower urinary tract. Early administration of neuromodulation via electrical or electromagnetic stimulation has been shown to limit secondary injury and potentially restore function. Low-frequency electrical stimulation accelerates axonal growth in the peripheral nervous system and may have a similar benefit in the central nervous system. Limited evidence suggests that sacral neuromodulation has the potential to limit or even prevent maladaptive neural restructuring of the lower urinary tract when administered during the spinal shock phase, when the bladder is areflexic. Herein, we review the pathophysiology of voiding dysfunction following acute injury, existing evidence for the benefit of early SNM in SCI, and possible mechanisms of action, including neural regeneration.
Literature
3.•
go back to reference Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57. doi:10.1016/j.pneurobio.2013.11.002. The authors present an excellent overview of the pathophysiology of SCI and evolving therapies in the acute and chronic phases of injury.CrossRefPubMed Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57. doi:10.​1016/​j.​pneurobio.​2013.​11.​002. The authors present an excellent overview of the pathophysiology of SCI and evolving therapies in the acute and chronic phases of injury.CrossRefPubMed
5.•
go back to reference Sievert K-D, Amend B, Gakis G, Toomey P, Badke A, Kaps HP, et al. Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann Neurol. 2010;67:74–84. doi:10.1002/ana.21814. This represents the only study in humans to demonstrate prevention of neurogenic detrusor overactivity by early administration of SNM. The authors prospectively followed 10 patients with complete SCI following bilateral S3 lead placement a mean of 2.9 months after the initial injury and 6 who declined therapy.CrossRefPubMed Sievert K-D, Amend B, Gakis G, Toomey P, Badke A, Kaps HP, et al. Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann Neurol. 2010;67:74–84. doi:10.​1002/​ana.​21814. This represents the only study in humans to demonstrate prevention of neurogenic detrusor overactivity by early administration of SNM. The authors prospectively followed 10 patients with complete SCI following bilateral S3 lead placement a mean of 2.9 months after the initial injury and 6 who declined therapy.CrossRefPubMed
6.
go back to reference Chai TC, Birder LA. Physiology and pharmacology of the bladder and urethra. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, editors. Campbell-Walsh Urol. 11th Ed., vol. 3. Philadelphia: Elsevier; 2016. p. 1631–84. Chai TC, Birder LA. Physiology and pharmacology of the bladder and urethra. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, editors. Campbell-Walsh Urol. 11th Ed., vol. 3. Philadelphia: Elsevier; 2016. p. 1631–84.
9.
14.
go back to reference Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 1997;3:73–6.CrossRefPubMed Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 1997;3:73–6.CrossRefPubMed
16.
go back to reference Wein AJ, Dmochowski RR. Neuromuscular dysfunction of the lower urinary tract. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, editors. Campbell-Walsh Urol. 11th Ed., vol. 3. Philadelphia: Elsevier; 2016. p. 1761–95. Wein AJ, Dmochowski RR. Neuromuscular dysfunction of the lower urinary tract. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, editors. Campbell-Walsh Urol. 11th Ed., vol. 3. Philadelphia: Elsevier; 2016. p. 1761–95.
18.
go back to reference Rossier AB, Fam BA, Dibenedetto M, Sarkarati M. Urodynamics in spinal shock patients. J Urol. 1979;122:783–7.PubMed Rossier AB, Fam BA, Dibenedetto M, Sarkarati M. Urodynamics in spinal shock patients. J Urol. 1979;122:783–7.PubMed
23.
go back to reference Lombardi G, Del Popolo G. Clinical outcome of sacral neuromodulation in incomplete spinal cord injured patients suffering from neurogenic lower urinary tract symptoms. Spinal Cord. 2009;47:486–91. doi:10.1038/sc.2008.172.CrossRefPubMed Lombardi G, Del Popolo G. Clinical outcome of sacral neuromodulation in incomplete spinal cord injured patients suffering from neurogenic lower urinary tract symptoms. Spinal Cord. 2009;47:486–91. doi:10.​1038/​sc.​2008.​172.CrossRefPubMed
24.
go back to reference Tanagho EA, Schmidt RA. Bladder pacemaker: scientific basis and clinical future. Urology. 1982;20:614–9.CrossRefPubMed Tanagho EA, Schmidt RA. Bladder pacemaker: scientific basis and clinical future. Urology. 1982;20:614–9.CrossRefPubMed
25.
go back to reference Tanagho EA, Schmidt RA, Orvis BR. Neural stimulation for control of voiding dysfunction: a preliminary report in 22 patients with serious neuropathic voiding disorders. J Urol. 1989;142:340–5.PubMed Tanagho EA, Schmidt RA, Orvis BR. Neural stimulation for control of voiding dysfunction: a preliminary report in 22 patients with serious neuropathic voiding disorders. J Urol. 1989;142:340–5.PubMed
28.
go back to reference Hohenfellner M, Humke J, Hampel C, Dahms S, Matzel K, Roth S, et al. Chronic sacral neuromodulation for treatment of neurogenic bladder dysfunction: long-term results with unilateral implants. Urology. 2001;58:887–92.CrossRefPubMed Hohenfellner M, Humke J, Hampel C, Dahms S, Matzel K, Roth S, et al. Chronic sacral neuromodulation for treatment of neurogenic bladder dysfunction: long-term results with unilateral implants. Urology. 2001;58:887–92.CrossRefPubMed
29.
go back to reference Lombardi G, Nelli F, Mencarini M, Del Popolo G. Clinical concomitant benefits on pelvic floor dysfunctions after sacral neuromodulation in patients with incomplete spinal cord injury. Spinal Cord. 2011;49:629–36. doi:10.1038/sc.2010.176.CrossRefPubMed Lombardi G, Nelli F, Mencarini M, Del Popolo G. Clinical concomitant benefits on pelvic floor dysfunctions after sacral neuromodulation in patients with incomplete spinal cord injury. Spinal Cord. 2011;49:629–36. doi:10.​1038/​sc.​2010.​176.CrossRefPubMed
30.
go back to reference Lombardi G, Musco S, Celso M, Ierardi A, Nelli F, Del Corso F, et al. Intravesical electrostimulation versus sacral neuromodulation for incomplete spinal cord patients suffering from neurogenic non-obstructive urinary retention. Spinal Cord. 2013;51:571–8. doi:10.1038/sc.2013.37.CrossRefPubMed Lombardi G, Musco S, Celso M, Ierardi A, Nelli F, Del Corso F, et al. Intravesical electrostimulation versus sacral neuromodulation for incomplete spinal cord patients suffering from neurogenic non-obstructive urinary retention. Spinal Cord. 2013;51:571–8. doi:10.​1038/​sc.​2013.​37.CrossRefPubMed
31.
go back to reference Chen G, Liao L. Sacral neuromodulation for neurogenic bladder and bowel dysfunction with multiple symptoms secondary to spinal cord disease. Spinal Cord. 2014. doi:10.1038/sc.2014.157. Chen G, Liao L. Sacral neuromodulation for neurogenic bladder and bowel dysfunction with multiple symptoms secondary to spinal cord disease. Spinal Cord. 2014. doi:10.​1038/​sc.​2014.​157.
33.
go back to reference Lombardi G, Musco S, Celso M, Del Corso F, Del Popolo G. Sacral neuromodulation for neurogenic non-obstructive urinary retention in incomplete spinal cord patients: a ten-year follow-up single-centre experience. Spinal Cord. 2014;52:241–5. doi:10.1038/sc.2013.155.CrossRefPubMed Lombardi G, Musco S, Celso M, Del Corso F, Del Popolo G. Sacral neuromodulation for neurogenic non-obstructive urinary retention in incomplete spinal cord patients: a ten-year follow-up single-centre experience. Spinal Cord. 2014;52:241–5. doi:10.​1038/​sc.​2013.​155.CrossRefPubMed
34.•
go back to reference Gaunt RA, Prochazka A. Control of urinary bladder function with devices: successes and failures. Prog Brain Res. 2006;152:163–94. doi:10.1016/S0079-6123(05)52011-9. The authors present compelling animal data that early electrical stimulation of the sacral root may have the capacity to maintain voiding after SCI and prevent DSD.CrossRefPubMed Gaunt RA, Prochazka A. Control of urinary bladder function with devices: successes and failures. Prog Brain Res. 2006;152:163–94. doi:10.​1016/​S0079-6123(05)52011-9. The authors present compelling animal data that early electrical stimulation of the sacral root may have the capacity to maintain voiding after SCI and prevent DSD.CrossRefPubMed
35.
go back to reference Schurch B, Reilly I, Reitz A, Curt A. Electrophysiological recordings during the peripheral nerve evaluation (PNE) test in complete spinal cord injury patients. World J Urol. 2003;20:319–22. doi:10.1007/s00345-002-0299-7.PubMed Schurch B, Reilly I, Reitz A, Curt A. Electrophysiological recordings during the peripheral nerve evaluation (PNE) test in complete spinal cord injury patients. World J Urol. 2003;20:319–22. doi:10.​1007/​s00345-002-0299-7.PubMed
36.
go back to reference Shaker HS, Tu LM, Robin S, Arabi K, Hassouna M, Sawan M, et al. Reduction of bladder outlet resistance by selective sacral root stimulation using high-frequency blockade in dogs: an acute study. J Urol. 1998;160:901–7.CrossRefPubMed Shaker HS, Tu LM, Robin S, Arabi K, Hassouna M, Sawan M, et al. Reduction of bladder outlet resistance by selective sacral root stimulation using high-frequency blockade in dogs: an acute study. J Urol. 1998;160:901–7.CrossRefPubMed
37.
go back to reference Abdel-Gawad M, Boyer S, Sawan M, Elhilali MM. Reduction of bladder outlet resistance by selective stimulation of the ventral sacral root using high frequency blockade: a chronic study in spinal cord transected dogs. J Urol. 2001;166:728–33. doi:10.1016/S0022-5347(05)66051-X.CrossRefPubMed Abdel-Gawad M, Boyer S, Sawan M, Elhilali MM. Reduction of bladder outlet resistance by selective stimulation of the ventral sacral root using high frequency blockade: a chronic study in spinal cord transected dogs. J Urol. 2001;166:728–33. doi:10.​1016/​S0022-5347(05)66051-X.CrossRefPubMed
39.
40.
go back to reference de Groat WC, Booth AM. Inhibition and facilitation in parasympathetic ganglia of the urinary bladder. Fed Proc. 1980;39:2990–6.PubMed de Groat WC, Booth AM. Inhibition and facilitation in parasympathetic ganglia of the urinary bladder. Fed Proc. 1980;39:2990–6.PubMed
43.
45.
go back to reference Kumar S, Dey S, Jain S. Extremely low-frequency electromagnetic fields: a possible non-invasive therapeutic tool for spinal cord injury rehabilitation. Electromagn Biol Med. 2016:1–14. doi:10.1080/15368378.2016.1194290. Kumar S, Dey S, Jain S. Extremely low-frequency electromagnetic fields: a possible non-invasive therapeutic tool for spinal cord injury rehabilitation. Electromagn Biol Med. 2016:1–14. doi:10.​1080/​15368378.​2016.​1194290.
46.
go back to reference Kumar S, Jain S, Velpandian T, Petrovich Gerasimenko Y, Avelev V, Behari J, et al. Exposure to extremely low-frequency magnetic field restores spinal cord injury-induced tonic pain and its related neurotransmitter concentration in the brain. Electromagn Biol Med. 2013;32:471–83. doi:10.3109/15368378.2012.743907.CrossRefPubMed Kumar S, Jain S, Velpandian T, Petrovich Gerasimenko Y, Avelev V, Behari J, et al. Exposure to extremely low-frequency magnetic field restores spinal cord injury-induced tonic pain and its related neurotransmitter concentration in the brain. Electromagn Biol Med. 2013;32:471–83. doi:10.​3109/​15368378.​2012.​743907.CrossRefPubMed
47.
go back to reference Delle Monache S, Alessandro R, Iorio R, Gualtieri G, Colonna R. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics. 2008;29:640–8. doi:10.1002/bem.20430.CrossRefPubMed Delle Monache S, Alessandro R, Iorio R, Gualtieri G, Colonna R. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics. 2008;29:640–8. doi:10.​1002/​bem.​20430.CrossRefPubMed
49.
go back to reference Mert T, Gunay I, Gocmen C, Kaya M, Polat S. Regenerative effects of pulsed magnetic field on injured peripheral nerves. Altern Ther Health Med. 2006;12:42–9.PubMed Mert T, Gunay I, Gocmen C, Kaya M, Polat S. Regenerative effects of pulsed magnetic field on injured peripheral nerves. Altern Ther Health Med. 2006;12:42–9.PubMed
50.
go back to reference Nardone R, Höller Y, Taylor A, Thomschewski A, Orioli A, Frey V, et al. Noninvasive spinal cord stimulation: technical aspects and therapeutic applications. Neuromodulation Technol Neural Interface. 2015;18:580–91. doi:10.1111/ner.12332.CrossRef Nardone R, Höller Y, Taylor A, Thomschewski A, Orioli A, Frey V, et al. Noninvasive spinal cord stimulation: technical aspects and therapeutic applications. Neuromodulation Technol Neural Interface. 2015;18:580–91. doi:10.​1111/​ner.​12332.CrossRef
51.
go back to reference Shalom DF, Pillalamarri N, Xue X, Kohn N, Lind LR, Winkler HA, et al. Sacral nerve stimulation reduces elevated urinary nerve growth factor levels in women with symptomatic detrusor overactivity. Am J Obstet Gynecol 2014;211:561.e1–561.e5. doi:10.1016/j.ajog.2014.07.007. Shalom DF, Pillalamarri N, Xue X, Kohn N, Lind LR, Winkler HA, et al. Sacral nerve stimulation reduces elevated urinary nerve growth factor levels in women with symptomatic detrusor overactivity. Am J Obstet Gynecol 2014;211:561.e1–561.e5. doi:10.​1016/​j.​ajog.​2014.​07.​007.
52.
53.••
go back to reference Frias B, Santos J, Morgado M, Sousa MM, Gray SMY, McCloskey KD, et al. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci Off J Soc Neurosci. 2015;35:2146–60. doi:10.1523/JNEUROSCI.0373-14.2015. This review from one of the world’s experts in nerve regeneration describes the differences between mechanisms of regrowth in the peripheral and central nervous systems. This review highlights some of the most insightful and important studies in the field to date.CrossRef Frias B, Santos J, Morgado M, Sousa MM, Gray SMY, McCloskey KD, et al. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci Off J Soc Neurosci. 2015;35:2146–60. doi:10.​1523/​JNEUROSCI.​0373-14.​2015. This review from one of the world’s experts in nerve regeneration describes the differences between mechanisms of regrowth in the peripheral and central nervous systems. This review highlights some of the most insightful and important studies in the field to date.CrossRef
54.
go back to reference Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci Off J Soc Neurosci. 2000;20:2602–8. Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci Off J Soc Neurosci. 2000;20:2602–8.
56.
go back to reference Gordon T, Udina E, Verge VMK, de Chaves EIP. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Mot Control. 2009;13:412–41.CrossRef Gordon T, Udina E, Verge VMK, de Chaves EIP. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Mot Control. 2009;13:412–41.CrossRef
Metadata
Title
Early Sacral Neuromodulation in Spinal Cord Injury—Can It Regenerate Nerves?
Authors
Joshua A. Cohn
Melissa R. Kaufman
Roger R. Dmochowski
Casey G. Kowalik
Douglas F. Milam
W. Stuart Reynolds
Publication date
01-12-2016
Publisher
Springer US
Published in
Current Bladder Dysfunction Reports / Issue 4/2016
Print ISSN: 1931-7212
Electronic ISSN: 1931-7220
DOI
https://doi.org/10.1007/s11884-016-0382-3

Other articles of this Issue 4/2016

Current Bladder Dysfunction Reports 4/2016 Go to the issue

Reconstructed Bladder Function & Dysfunction (M Kaufman, Section Editor)

Abdominal Imaging Following Urinary Reconstruction: Recommendations and Pitfalls

Reconstructed Bladder Function & Dysfunction (M Kaufman, Section Editor)

Surgical and Metabolic Management of Urolithiasis Following Bladder Reconstruction

Neurogenic Bladder (C Powell, Section Editor)

Cystectomy for Neurogenic Bladder

Neurogenic Bladder (C Powell, Section Editor)

Bladder Re-Innervation—State of the Art

Reconstructed Bladder Function & Dysfunction (M Kaufman, Section Editor)

Minimally Invasive Approaches to Continent Urinary Diversion