Skip to main content
Top
Published in: Trials 1/2015

Open Access 01-12-2015 | Study protocol

Early rehabilitation using a passive cycle ergometer on muscle morphology in mechanically ventilated critically ill patients in the Intensive Care Unit (MoVe-ICU study): study protocol for a randomized controlled trial

Authors: Laura Jurema dos Santos, Fernando de Aguiar Lemos, Tanara Bianchi, Amanda Sachetti, Ana Maria Dall’ Acqua, Wagner da Silva Naue, Alexandre Simões Dias, Silvia Regina Rios Vieira

Published in: Trials | Issue 1/2015

Login to get access

Abstract

Background

Patients in Intensive Care Units (ICU) are often exposed to prolonged immobilization which, in turn, plays an important role in neuromuscular complications. Exercise with a cycle ergometer is a treatment option that can be used to improve the rehabilitation of patients on mechanical ventilation (MV) in order to minimize the harmful effects of immobility.

Methods/Design

A single-blind randomized controlled trial (the MoVe ICU study) will be conducted to evaluate and compare the effects of early rehabilitation using a bedside cycle ergometer with conventional physical therapy on the muscle morphology of the knee extensors and diaphragm in critical ill patients receiving MV. A total of 28 adult patients will be recruited for this study from among those admitted to the intensive care department at the Hospital de Clínicas de Porto Alegre. Eligible patients will be treated with MV from a period of 24 to 48 h, will have spent maximum of 1 week in hospital and will not exhibit any characteristics restricting lower extremity mobility. These subjects will be randomized to receive either conventional physiotherapy or conventional physiotherapy with an additional cycle ergometer intervention. The intervention will be administered passively for 20 min, at 20 revolutions per minute (rpm), once per day, 7 days a week, throughout the time the patients remain on MV. Outcomes will be cross-sectional quadriceps thickness, length of fascicle, pennation angle of fascicles, thickness of vastus lateralis muscle, diaphragm thickness and excursion of critical ICU patients on MV measured with ultrasound.

Discussion

The MoVe-ICU study will be the first randomized controlled trial to test the hypothesis that early rehabilitation with a passive cycle ergometer can preserve the morphology of knee extensors and diaphragm in critical patients on MV in ICUs.

Trial registration

NCT02300662 (25 November 2014).
Literature
1.
go back to reference Needham DM, Troug AD, Fan E. Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med. 2009;37 Suppl 10:S436–41.CrossRefPubMed Needham DM, Troug AD, Fan E. Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med. 2009;37 Suppl 10:S436–41.CrossRefPubMed
2.
go back to reference Troung AD, Fan E, Brower RG, Needham DM. Bench-to-bedside review: mobilizing patients in the Intensive Care-Unit–from pathophysiology to clinical trials. Crit Care. 2009;13(4):216.CrossRef Troung AD, Fan E, Brower RG, Needham DM. Bench-to-bedside review: mobilizing patients in the Intensive Care-Unit–from pathophysiology to clinical trials. Crit Care. 2009;13(4):216.CrossRef
3.
go back to reference Meesen RL, Dendale P, Cuypers K, Berger J, Hermans A, Thijs H, et al. Neuromuscular electrical stimulation as a possible means to prevent muscle tissue wasting in artificially ventilated and sedated patients in the Intensive Care Unit: a pilot study. Neuromodulation. 2010;13(4):315–20.CrossRefPubMed Meesen RL, Dendale P, Cuypers K, Berger J, Hermans A, Thijs H, et al. Neuromuscular electrical stimulation as a possible means to prevent muscle tissue wasting in artificially ventilated and sedated patients in the Intensive Care Unit: a pilot study. Neuromodulation. 2010;13(4):315–20.CrossRefPubMed
4.
go back to reference Llano-Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, et al. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. Crit Care. 2012;26(16):R209.CrossRef Llano-Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, et al. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. Crit Care. 2012;26(16):R209.CrossRef
5.
go back to reference Fletcher SN, Kennedy DD, Ghosh IR, Misra VP, Kiff K, Coakley JH, et al. Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness. Crit Care Med. 2003;31(4):1012–6.CrossRefPubMed Fletcher SN, Kennedy DD, Ghosh IR, Misra VP, Kiff K, Coakley JH, et al. Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness. Crit Care Med. 2003;31(4):1012–6.CrossRefPubMed
6.
go back to reference Williams N, Flyn M. A review of the efficacy of neuromuscular electrical stimulation in critically ill patients. Physiother Theory Pract. 2014;30(1):6–11.CrossRefPubMed Williams N, Flyn M. A review of the efficacy of neuromuscular electrical stimulation in critically ill patients. Physiother Theory Pract. 2014;30(1):6–11.CrossRefPubMed
7.
go back to reference Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the Intensive Care Unit. Muscle Nerve. 2012;45(1):18–25.CrossRefPubMed Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the Intensive Care Unit. Muscle Nerve. 2012;45(1):18–25.CrossRefPubMed
8.
go back to reference Vanpee G, Segers J, Van Mechelen H, Wouters P, Van den Berghe G, Hermans G, et al. The interobserver agreement of handheld dynamometry for muscle strength assessment in critically ill patients. Crit Care Med. 2011;39(8):1929–34.CrossRefPubMed Vanpee G, Segers J, Van Mechelen H, Wouters P, Van den Berghe G, Hermans G, et al. The interobserver agreement of handheld dynamometry for muscle strength assessment in critically ill patients. Crit Care Med. 2011;39(8):1929–34.CrossRefPubMed
9.
go back to reference França EE, Ferrari F, Fernandes P, Cavalcanti R, Duarte A, Martinez BP, et al. Physical therapy in critically ill adult patients: recommendations from the Brazilian Association of Intensive Care Medicine Department of Physical Therapy. Rev Bras Ter Intensiva. 2012;24(1):6–22.CrossRefPubMed França EE, Ferrari F, Fernandes P, Cavalcanti R, Duarte A, Martinez BP, et al. Physical therapy in critically ill adult patients: recommendations from the Brazilian Association of Intensive Care Medicine Department of Physical Therapy. Rev Bras Ter Intensiva. 2012;24(1):6–22.CrossRefPubMed
10.
go back to reference Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37(9):2499–505.CrossRefPubMed Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37(9):2499–505.CrossRefPubMed
11.
go back to reference Dantas CM, Silva PFS, Siqueira FHT, Pinto RMF, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012;24(2):173–8.CrossRefPubMed Dantas CM, Silva PFS, Siqueira FHT, Pinto RMF, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012;24(2):173–8.CrossRefPubMed
12.
go back to reference Pinheiro AR, Christofoletti G. Motor physical therapy in hospitalized patients in an intensive care unit: a systematic review. Rev Bras Ter Intensiva. 2012;24(2):188–96.CrossRefPubMed Pinheiro AR, Christofoletti G. Motor physical therapy in hospitalized patients in an intensive care unit: a systematic review. Rev Bras Ter Intensiva. 2012;24(2):188–96.CrossRefPubMed
13.
go back to reference Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96(3):885–92.CrossRefPubMed Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96(3):885–92.CrossRefPubMed
14.
go back to reference Erskine RM, Jones DA, Maganaris CN, Degens H. In vivo specific tension of the human quadriceps femoris muscle. J Appl Physiol. 2009;106(6):827–38.CrossRef Erskine RM, Jones DA, Maganaris CN, Degens H. In vivo specific tension of the human quadriceps femoris muscle. J Appl Physiol. 2009;106(6):827–38.CrossRef
15.
go back to reference Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36.CrossRefPubMed Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36.CrossRefPubMed
16.
go back to reference Cohn D, Benditt JO, Eveloff S, McCool FD. Diaphragm thickening during inspiration. J Appl Physiol. 1997;83(1):291–6.PubMed Cohn D, Benditt JO, Eveloff S, McCool FD. Diaphragm thickening during inspiration. J Appl Physiol. 1997;83(1):291–6.PubMed
17.
go back to reference Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by M-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009;135(2):391–400.CrossRefPubMed Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by M-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009;135(2):391–400.CrossRefPubMed
18.
go back to reference Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–10.CrossRefPubMed Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–10.CrossRefPubMed
19.
go back to reference Needham DM. Early mobilization of critically ill patients: reducing neuromuscular complications after intensive care. JAMA. 2008;300(14):1685–90.CrossRefPubMed Needham DM. Early mobilization of critically ill patients: reducing neuromuscular complications after intensive care. JAMA. 2008;300(14):1685–90.CrossRefPubMed
20.
go back to reference Penha GS, Damiano AP, Carvalho T, Lain V, Serafim JD. Early mobilization in acute stage of deep venous thrombosis of the lower limbs. J Vasc Bras. 2009;8(1):77–85.CrossRef Penha GS, Damiano AP, Carvalho T, Lain V, Serafim JD. Early mobilization in acute stage of deep venous thrombosis of the lower limbs. J Vasc Bras. 2009;8(1):77–85.CrossRef
21.
go back to reference Alberti LR, Petroianu A, Corrêa D, Franco ST. The influence of physical activity on chronic venous insufficiency of the lower limbs. Acta Med Port. 2008;21(3):215–20.PubMed Alberti LR, Petroianu A, Corrêa D, Franco ST. The influence of physical activity on chronic venous insufficiency of the lower limbs. Acta Med Port. 2008;21(3):215–20.PubMed
22.
go back to reference Gosselink R, Clerckx B, Robbets C, Vanhullebusch T, Vampee G, Segers J. Physiotherapy in the Intensive Care Unit. Neth J Crit Care. 2011;15(2):66–75. Gosselink R, Clerckx B, Robbets C, Vanhullebusch T, Vampee G, Segers J. Physiotherapy in the Intensive Care Unit. Neth J Crit Care. 2011;15(2):66–75.
23.
go back to reference Perme C, Chandrashekar R. Early mobility and walking program for patients in Intensive Care Units: creating a standard of care. Am J Crit Care. 2009;18(3):212–21.CrossRefPubMed Perme C, Chandrashekar R. Early mobility and walking program for patients in Intensive Care Units: creating a standard of care. Am J Crit Care. 2009;18(3):212–21.CrossRefPubMed
24.
25.
go back to reference Davidson JE, Harvey MA, Bemis-Dogherty A, Smith JM, Hopkins RO. Implementation of the Pain, Agitation and Delirium Clinical Practice Guidelines and promoting patient mobility to prevent post-intensive care syndrome. Crit Care Med. 2013;419 Suppl 9:S136–45.CrossRef Davidson JE, Harvey MA, Bemis-Dogherty A, Smith JM, Hopkins RO. Implementation of the Pain, Agitation and Delirium Clinical Practice Guidelines and promoting patient mobility to prevent post-intensive care syndrome. Crit Care Med. 2013;419 Suppl 9:S136–45.CrossRef
26.
go back to reference Engel HJ, Needham DM, Morris PE, Gropper MA. ICU early mobilization: from recommendation to implementation at three medical centers. Crit Care Med. 2013;41 Suppl 9:S69–80.CrossRefPubMed Engel HJ, Needham DM, Morris PE, Gropper MA. ICU early mobilization: from recommendation to implementation at three medical centers. Crit Care Med. 2013;41 Suppl 9:S69–80.CrossRefPubMed
27.
go back to reference Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238–43.CrossRefPubMed Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238–43.CrossRefPubMed
28.
go back to reference Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.CrossRefPubMed Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.CrossRefPubMed
30.
go back to reference Puthucheary Z, Harridge S, Hart N. Skeletal muscle dysfunction in critical care: wasting, weakness, and rehabilitation strategies. Crit Care Med. 2010;38 Suppl 10:S676–82.CrossRefPubMed Puthucheary Z, Harridge S, Hart N. Skeletal muscle dysfunction in critical care: wasting, weakness, and rehabilitation strategies. Crit Care Med. 2010;38 Suppl 10:S676–82.CrossRefPubMed
31.
go back to reference Connolly B, MacBean V, Crowley C, Lunt A, Moxham J, Rafferty GF, et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review. Crit Care Med. 2015;43(4):897–905.CrossRefPubMed Connolly B, MacBean V, Crowley C, Lunt A, Moxham J, Rafferty GF, et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review. Crit Care Med. 2015;43(4):897–905.CrossRefPubMed
32.
go back to reference Stiller K. Physiotherapy in intensive care: an updated systematic review. Chest. 2013;144(3):825–47.CrossRefPubMed Stiller K. Physiotherapy in intensive care: an updated systematic review. Chest. 2013;144(3):825–47.CrossRefPubMed
Metadata
Title
Early rehabilitation using a passive cycle ergometer on muscle morphology in mechanically ventilated critically ill patients in the Intensive Care Unit (MoVe-ICU study): study protocol for a randomized controlled trial
Authors
Laura Jurema dos Santos
Fernando de Aguiar Lemos
Tanara Bianchi
Amanda Sachetti
Ana Maria Dall’ Acqua
Wagner da Silva Naue
Alexandre Simões Dias
Silvia Regina Rios Vieira
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Trials / Issue 1/2015
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-015-0914-8

Other articles of this Issue 1/2015

Trials 1/2015 Go to the issue