Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Case report

Early-onset of ADCK4 glomerulopathy with renal failure: a case report

Authors: Ksenija Lolin, Benedetta D. Chiodini, Elise Hennaut, Brigitte Adams, Karin Dahan, Khalid Ismaili

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

We present a rare early presentation of a ADCK4-related glomerulopathy. This case is of interest as potentially treatable if genetic results are timely obtained.

Case presentation

We report the case of a 5-year-old boy who was identified with significant proteinuria by a urinary routine screening program for school children. Physical examination revealed dysplastic ears and abnormal folded pinna. Albumin level was 41 g/L (39–53 g/L), and urine proteins/creatinine ratio was 2.6 g/g. Renal ultrasound showed enlarged kidneys and perimedullary hyperechogenicity. Treatment by angiotensin-converting-enzyme inhibitor was not beneficial. Renal biopsy showed signs of focal segmental glomerulosclerosis. After 4 years of follow-up, he developed a clinical nephrotic syndrome and no response to prednisone and other immunosuppressive agents was obtained. Within 6 months, he was in end-stage-renal-failure (ESRF) and hemodialysis was started. He was transplanted at 10 years with his mother’s kidney. Genes known to be responsible in steroid-resistant nephrotic syndromes were tested. Our patient is compound heterozygous for two mutations in the aarF domain-containing-kinase 4 (ADCK4) gene. ADCK4 gene is one of the genes involved in coenzyme Q10 (CoQ10) biosynthesis, is located in chromosome 19q13.2 and expressed in podocytes. ADCK4 mutations show a largely renal-limited phenotype. The nephropathy usually presents during adolescence, fast evolves towards ESRF, and may be treatable by CoQ10 supplementation if started early in the disease. Our patient presented nephrotic range proteinuria at 5 years, and he reached ESRF at 10 years.

Conclusion

ADCK4-related glomerulopathy is an important novel and potentially treatable cause of isolated nephropathy not only in adolescents, but also in children in their first decade of life. Discovery of important proteinuria in an asymptomatic child should prompt early genetic investigations.
Literature
1.
go back to reference Vehaskari VM, Rapola J. Isolated proteinuria: analysis of a school-age population. J Pediatr. 1982;101:661–8.CrossRefPubMed Vehaskari VM, Rapola J. Isolated proteinuria: analysis of a school-age population. J Pediatr. 1982;101:661–8.CrossRefPubMed
2.
go back to reference Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26:1279–89.CrossRefPubMed Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26:1279–89.CrossRefPubMed
3.
go back to reference Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol. 2010;25:1621–32.CrossRefPubMedPubMedCentral Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol. 2010;25:1621–32.CrossRefPubMedPubMedCentral
4.
go back to reference Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358:2849–50.CrossRefPubMed Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358:2849–50.CrossRefPubMed
5.
go back to reference Korkmaz E, Lipska-Ziḙtkiewicz BS, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, et al. ADCK4-Associated Glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol. 2015;27:1–6. Korkmaz E, Lipska-Ziḙtkiewicz BS, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, et al. ADCK4-Associated Glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol. 2015;27:1–6.
7.
go back to reference Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis. 2015;38:145–56.CrossRefPubMed Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis. 2015;38:145–56.CrossRefPubMed
8.
go back to reference Doimo MA, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L. Genetics of Coenzyme Q10 deficiency. Mol Syndromol. 2014;5:156–62.PubMedPubMedCentral Doimo MA, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L. Genetics of Coenzyme Q10 deficiency. Mol Syndromol. 2014;5:156–62.PubMedPubMedCentral
9.
go back to reference Ashraf S, Gee HY, Woermer S, Pabst WL, Gee HY, Kohl S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123:5179–89.CrossRefPubMedPubMedCentral Ashraf S, Gee HY, Woermer S, Pabst WL, Gee HY, Kohl S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123:5179–89.CrossRefPubMedPubMedCentral
Metadata
Title
Early-onset of ADCK4 glomerulopathy with renal failure: a case report
Authors
Ksenija Lolin
Benedetta D. Chiodini
Elise Hennaut
Brigitte Adams
Karin Dahan
Khalid Ismaili
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0392-9

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue