Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Research article

Early initiation of a strength training based rehabilitation after lumbar spine fusion improves core muscle strength: a randomized controlled trial

Authors: Dejan Kernc, Vojko Strojnik, Rok Vengust

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

To analyze the safety and effects of early initiation of rehabilitation including objective measurement outcomes after lumbar spine fusion based on principles of strength training.

Methods

The study recruited 27 patients, aged 45 to 70 years, who had undergone lumbar spine fusion. The method of concealed random allocation without blocking was used to form two groups. The strength training group started rehabilitation 3 weeks after surgery. Patients exercised twice weekly over 9 weeks focusing on muscle activation of lumbopelvic stabilization muscles. The control group followed a standard postoperative protocol, where no exercises were performed at that stage of rehabilitation. Functional outcomes and plain radiographs were evaluated at 3 weeks and subsequently at 3 and 18 months after the surgery.

Results

No hardware loosening of failure was observed in the training group. Both groups improved their walking speed after 3 months (p < 0.01), although improvement in the training group was significantly greater than in the control group (p < 0.01). Moreover, the training group significantly improved after the training period in all isometric trunk muscles measurements (p < 0.03), standing reach height (p < 0.02), and pre-activation pattern (p < 0.05). After 18 months, no training effects were observed.

Conclusions

The study showed that early initiation of a postoperative rehabilitation program based on principles of strength training is safe, 3 weeks after lumbar spine fusion, and enable earlier functional recovery than standard rehabilitation protocol.

Trial registration

The study is registered at the US National Institutes of Health (ClinicalTrials.​gov) NCT03349580. The date of registration: November 21, 2017 - Retrospectively registered.
Literature
1.
go back to reference Christensen FB, Stender Hansen E, Laursen M, Thomsen K, Bunger CE. Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: randomized clinical study with a 5-year follow-up. Spine. 2002;27:1269–77.CrossRef Christensen FB, Stender Hansen E, Laursen M, Thomsen K, Bunger CE. Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: randomized clinical study with a 5-year follow-up. Spine. 2002;27:1269–77.CrossRef
2.
go back to reference Deyo RA, Gray DT, Kreuter W, Mirza S, Brook M. United States trends in lumbar fusion surgery for degenerative conditions. Spine. 2005;30:1441–5.CrossRefPubMed Deyo RA, Gray DT, Kreuter W, Mirza S, Brook M. United States trends in lumbar fusion surgery for degenerative conditions. Spine. 2005;30:1441–5.CrossRefPubMed
3.
go back to reference Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT. 1997 Volvo award winner in clinical studies: degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine. 1997;22:2807–12.CrossRefPubMed Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT. 1997 Volvo award winner in clinical studies: degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine. 1997;22:2807–12.CrossRefPubMed
4.
go back to reference France JC, Yaszemski MJ, Lauerman WC, Cain JE, Glover JM, Lawson KJ, et al. A randomized prospective study of posterolateral lumbar fusion: outcomes with and without pedicle screw instrumentation. Spine. 1999;24:553–60.CrossRefPubMed France JC, Yaszemski MJ, Lauerman WC, Cain JE, Glover JM, Lawson KJ, et al. A randomized prospective study of posterolateral lumbar fusion: outcomes with and without pedicle screw instrumentation. Spine. 1999;24:553–60.CrossRefPubMed
5.
go back to reference Möller H, Hedlund R. Instrumented and noninstrumented posterolateral fusion in adult spondylolisthesis: a prospective randomized study: part 2. Spine. 2000;25:1716–21.CrossRefPubMed Möller H, Hedlund R. Instrumented and noninstrumented posterolateral fusion in adult spondylolisthesis: a prospective randomized study: part 2. Spine. 2000;25:1716–21.CrossRefPubMed
6.
go back to reference Weinstein NJ, Lurie JD, Olson P, Bronner KK, Fisher ES, Morgan TS. United States trends and regional variations in lumbar spine surgery: 1992–2003. Spine. 2006;31:2707.CrossRefPubMedPubMedCentral Weinstein NJ, Lurie JD, Olson P, Bronner KK, Fisher ES, Morgan TS. United States trends and regional variations in lumbar spine surgery: 1992–2003. Spine. 2006;31:2707.CrossRefPubMedPubMedCentral
7.
go back to reference Christensen FB, Laurberg I, Bünger CE. Importance of the back-cafe concept to rehabilitation after lumbar spinal fusion: a randomized clinical study with a 2-year follow-up. Spine. 2003;28:2561–9.CrossRefPubMed Christensen FB, Laurberg I, Bünger CE. Importance of the back-cafe concept to rehabilitation after lumbar spinal fusion: a randomized clinical study with a 2-year follow-up. Spine. 2003;28:2561–9.CrossRefPubMed
8.
go back to reference Oestergaard LG, Nielsen CV, Bunger CE, Svidt K, Christensen FB. The effect of timing of rehabilitation on physical performance after lumbar spinal fusion: a randomized clinical study. Eur Spine J. 2013;22:1884–90.CrossRefPubMedPubMedCentral Oestergaard LG, Nielsen CV, Bunger CE, Svidt K, Christensen FB. The effect of timing of rehabilitation on physical performance after lumbar spinal fusion: a randomized clinical study. Eur Spine J. 2013;22:1884–90.CrossRefPubMedPubMedCentral
9.
go back to reference Cholewicki J, Juluru K, McGill SM. Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech. 1999;32:13–7.CrossRefPubMed Cholewicki J, Juluru K, McGill SM. Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech. 1999;32:13–7.CrossRefPubMed
10.
go back to reference Cholewicki J, Reeves NP. All abdominal muscles must be considered when evaluating the intra-abdominal pressure contribution to trunk extensor moment and spinal loading. J Biomech. 2004;37:953–4.CrossRefPubMed Cholewicki J, Reeves NP. All abdominal muscles must be considered when evaluating the intra-abdominal pressure contribution to trunk extensor moment and spinal loading. J Biomech. 2004;37:953–4.CrossRefPubMed
11.
go back to reference Hodges PW, Cresswell AG, Daggfeldt K, Thorstensson A. In vivo measurement of the effect of intra-abdominal pressure on the human spine. J Biomech. 2001;34:347–53.CrossRefPubMed Hodges PW, Cresswell AG, Daggfeldt K, Thorstensson A. In vivo measurement of the effect of intra-abdominal pressure on the human spine. J Biomech. 2001;34:347–53.CrossRefPubMed
12.
go back to reference Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997;114:362–70.CrossRefPubMed Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997;114:362–70.CrossRefPubMed
13.
go back to reference Schröter J, Lechterbeck M, Hartmann F, Gercek E. Structured rehabilitation after lumbar spine surgery: subacute treatment phase. Der Orthopade. 2014;43:1089–95.CrossRefPubMed Schröter J, Lechterbeck M, Hartmann F, Gercek E. Structured rehabilitation after lumbar spine surgery: subacute treatment phase. Der Orthopade. 2014;43:1089–95.CrossRefPubMed
14.
go back to reference Oestergaard LG, Nielsen CV, Bunger CE, Sogaaed R, Fruensgaard S, Helmig P, et al. The effect of early initiation of rehabilitation after lumbar spinal fusion: a randomized clinical study. Spine. 2012;37:1803–9.CrossRefPubMed Oestergaard LG, Nielsen CV, Bunger CE, Sogaaed R, Fruensgaard S, Helmig P, et al. The effect of early initiation of rehabilitation after lumbar spinal fusion: a randomized clinical study. Spine. 2012;37:1803–9.CrossRefPubMed
15.
go back to reference Greenwood J, Mcgregor A, Jones F, Mullane J, Hurley M. Rehabilitation following lumbar fusion surgery: a systematic review and meta-analysis. Spine. 2016;41:28–36.CrossRef Greenwood J, Mcgregor A, Jones F, Mullane J, Hurley M. Rehabilitation following lumbar fusion surgery: a systematic review and meta-analysis. Spine. 2016;41:28–36.CrossRef
16.
go back to reference Abbott AD, Tyni-Lenné R, Hedlund R. Early rehabilitation targeting cognition, behavior, and motor function after lumbar fusion: a randomized controlled trial. Spine. 2010;35:848–57.CrossRefPubMed Abbott AD, Tyni-Lenné R, Hedlund R. Early rehabilitation targeting cognition, behavior, and motor function after lumbar fusion: a randomized controlled trial. Spine. 2010;35:848–57.CrossRefPubMed
17.
go back to reference Paalanne NP, Korpelainen R, Taimela SP, Remes J, Salakka M, Karppinen JI. Reproducibility and reference values of inclinometric balance and isometric trunk muscle strength measurements in Finnish young adults. J Strength Conditioning Res. 2009;23:1618–26.CrossRef Paalanne NP, Korpelainen R, Taimela SP, Remes J, Salakka M, Karppinen JI. Reproducibility and reference values of inclinometric balance and isometric trunk muscle strength measurements in Finnish young adults. J Strength Conditioning Res. 2009;23:1618–26.CrossRef
18.
go back to reference Laboratories A.C.o.P.S.f.C.P.F. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111.CrossRef Laboratories A.C.o.P.S.f.C.P.F. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111.CrossRef
19.
go back to reference Bennell K, Dobson F, Hinman R. Measures of physical performance assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 2011;63:350–70.CrossRef Bennell K, Dobson F, Hinman R. Measures of physical performance assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 2011;63:350–70.CrossRef
20.
go back to reference Silfies SP, Bhattacharya A, Biely S, Smith SS, Giszter S. Trunk control during standing reach: a dynamical system analysis of movement strategies in patients with mechanical low back pain. Gait Posture. 2009;29:370–6.CrossRefPubMed Silfies SP, Bhattacharya A, Biely S, Smith SS, Giszter S. Trunk control during standing reach: a dynamical system analysis of movement strategies in patients with mechanical low back pain. Gait Posture. 2009;29:370–6.CrossRefPubMed
21.
go back to reference Casanova C, Celli BR, Barria P, Casas A, Cote C, De Torres JP, et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur Respiratory J. 2011;37:150–6.CrossRef Casanova C, Celli BR, Barria P, Casas A, Cote C, De Torres JP, et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur Respiratory J. 2011;37:150–6.CrossRef
22.
go back to reference Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: relationship with muscle strength. Spinal Cord. 2004;42:156–62.CrossRefPubMedPubMedCentral Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: relationship with muscle strength. Spinal Cord. 2004;42:156–62.CrossRefPubMedPubMedCentral
23.
go back to reference Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman P, Beek PJ. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J. 2006;15:23–40.CrossRefPubMed Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman P, Beek PJ. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J. 2006;15:23–40.CrossRefPubMed
24.
go back to reference Redelmeier DA, Bayoumi AM, Goldstein RS, Guyatt GH. Interpreting small differences in functional status: the Six Minute Walk test in chronic lung disease patients. Am J Respir Crit Care Med. 1997;155:1278–82.CrossRefPubMed Redelmeier DA, Bayoumi AM, Goldstein RS, Guyatt GH. Interpreting small differences in functional status: the Six Minute Walk test in chronic lung disease patients. Am J Respir Crit Care Med. 1997;155:1278–82.CrossRefPubMed
25.
go back to reference Crombez G, Vlaeyen J, Heuts P, Lysens R. Pain-related fear is more disabling than pain itself: evidence on the role of pain-related fear in chronic back pain disability. Pain. 1999;80:329–39.CrossRefPubMed Crombez G, Vlaeyen J, Heuts P, Lysens R. Pain-related fear is more disabling than pain itself: evidence on the role of pain-related fear in chronic back pain disability. Pain. 1999;80:329–39.CrossRefPubMed
Metadata
Title
Early initiation of a strength training based rehabilitation after lumbar spine fusion improves core muscle strength: a randomized controlled trial
Authors
Dejan Kernc
Vojko Strojnik
Rok Vengust
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0853-7

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue