Skip to main content
Top
Published in: Journal of Neurology 4/2024

29-11-2023 | Dystonia | Original Communication

Structural brain heterogeneity underlying symptomatic and asymptomatic genetic dystonia: a multimodal MRI study

Authors: Aleksandra Tomić, Elisabetta Sarasso, Silvia Basaia, Nataša Dragašević-Misković, Marina Svetel, Vladimir S. Kostić, Massimo Filippi, Federica Agosta

Published in: Journal of Neurology | Issue 4/2024

Login to get access

Abstract

Background

Most of DYT genotypes follow an autosomal dominant inheritance pattern with reduced penetrance; the mechanisms underlying the disease development remain unclear. The objective of the study was to investigate cortical thickness, grey matter (GM) volumes and white matter (WM) alterations in asymptomatic (DYT-A) and symptomatic dystonia (DYT-S) mutation carriers.

Methods

Eight DYT-A (four DYT-TOR1A and four DYT-THAP1), 14 DYT-S (seven DYT-TOR1A, and seven DYT-THAP1), and 37 matched healthy controls underwent 3D T1-weighted and diffusion tensor (DT) MRI to study cortical thickness, cerebellar and basal ganglia GM volumes and WM microstructural changes.

Results

DYT-S showed thinning of the frontal and motor cortical regions related to sensorimotor and cognitive processing, together with putaminal atrophy and subcortical microstructural WM damage of both motor and extra-motor tracts such as cerebral peduncle, corona radiata, internal and external capsule, temporal and orbitofrontal WM, and corpus callosum. DYT-A had cortical thickening of middle frontal areas and WM damage of the corona radiata.

Conclusions

DYT genes phenotypic expression is associated with alterations of both motor and extra-motor WM and GM regions. Asymptomatic genetic status is characterized by a very subtle affection of the WM motor pathway, together with an increased cortical thickness of higher-order frontal regions that might interfere with phenotypic presentation and disease manifestation.
Appendix
Available only for authorised users
Literature
3.
go back to reference Carbon M, Eidelberg D (2009) Abnormal structure-function relationships in hereditary dystonia. Neuroscience 164(1):220–229PubMedCrossRef Carbon M, Eidelberg D (2009) Abnormal structure-function relationships in hereditary dystonia. Neuroscience 164(1):220–229PubMedCrossRef
4.
go back to reference Fuchs T et al (2009) Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet 41(3):286–288PubMedCrossRef Fuchs T et al (2009) Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet 41(3):286–288PubMedCrossRef
5.
6.
go back to reference Ozelius LJ et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17(1):40–48PubMedCrossRef Ozelius LJ et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17(1):40–48PubMedCrossRef
7.
go back to reference Bressman SB et al (1994) Dystonia in Ashkenazi Jews: clinical characterization of a founder mutation. Ann Neurol 36(5):771–777PubMedCrossRef Bressman SB et al (1994) Dystonia in Ashkenazi Jews: clinical characterization of a founder mutation. Ann Neurol 36(5):771–777PubMedCrossRef
9.
go back to reference Opal P et al (2002) Intrafamilial phenotypic variability of the DYT1 dystonia: from asymptomatic TOR1A gene carrier status to dystonic storm. Mov Disord 17(2):339–345PubMedCrossRef Opal P et al (2002) Intrafamilial phenotypic variability of the DYT1 dystonia: from asymptomatic TOR1A gene carrier status to dystonic storm. Mov Disord 17(2):339–345PubMedCrossRef
10.
go back to reference Sadnicka A, Galea J, Edwards MJ (2019) What can kinematic studies tell us about the mechanisms of dystonia? Prog Brain Res 249:251–260PubMedCrossRef Sadnicka A, Galea J, Edwards MJ (2019) What can kinematic studies tell us about the mechanisms of dystonia? Prog Brain Res 249:251–260PubMedCrossRef
11.
go back to reference Comella CL et al (2003) Rating scales for dystonia: a multicenter assessment. Mov Disord 18(3):303–312PubMedCrossRef Comella CL et al (2003) Rating scales for dystonia: a multicenter assessment. Mov Disord 18(3):303–312PubMedCrossRef
12.
go back to reference Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055PubMedPubMedCentralCrossRef Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055PubMedPubMedCentralCrossRef
13.
go back to reference Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194PubMedCrossRef Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194PubMedCrossRef
14.
go back to reference Desikan RS et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980PubMedCrossRef Desikan RS et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980PubMedCrossRef
15.
go back to reference Rohde GK et al (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51(1):103–114PubMedCrossRef Rohde GK et al (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51(1):103–114PubMedCrossRef
16.
go back to reference Smith SM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505PubMedCrossRef Smith SM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505PubMedCrossRef
17.
go back to reference Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25PubMedCrossRef Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25PubMedCrossRef
18.
go back to reference MacIver CL et al (2022) Structural magnetic resonance imaging in dystonia: a systematic review of methodological approaches and findings. Eur J Neurol 29(11):3418–3448PubMedPubMedCentralCrossRef MacIver CL et al (2022) Structural magnetic resonance imaging in dystonia: a systematic review of methodological approaches and findings. Eur J Neurol 29(11):3418–3448PubMedPubMedCentralCrossRef
22.
go back to reference Piramide N et al (2022) Functional MRI connectivity of the primary motor cortex in functional dystonia patients. J Neurol 269(6):2961–2971PubMedCrossRef Piramide N et al (2022) Functional MRI connectivity of the primary motor cortex in functional dystonia patients. J Neurol 269(6):2961–2971PubMedCrossRef
23.
go back to reference Tomic A et al (2020) Are there two different forms of functional dystonia? A multimodal brain structural MRI study. Mol Psychiatry 25(12):3350–3359PubMedCrossRef Tomic A et al (2020) Are there two different forms of functional dystonia? A multimodal brain structural MRI study. Mol Psychiatry 25(12):3350–3359PubMedCrossRef
24.
go back to reference Tomic A et al (2021) Brain structural changes in focal dystonia-what about task specificity? A multimodal MRI study. Mov Disord 36(1):196–205PubMedCrossRef Tomic A et al (2021) Brain structural changes in focal dystonia-what about task specificity? A multimodal MRI study. Mov Disord 36(1):196–205PubMedCrossRef
25.
go back to reference Vo A et al (2015) Thalamocortical connectivity correlates with phenotypic variability in dystonia. Cereb Cortex 25(9):3086–3094PubMedCrossRef Vo A et al (2015) Thalamocortical connectivity correlates with phenotypic variability in dystonia. Cereb Cortex 25(9):3086–3094PubMedCrossRef
26.
go back to reference Sarasso E et al (2018) Brain motor functional changes after somatosensory discrimination training. Brain Imaging Behav 12(4):1011–1021PubMedCrossRef Sarasso E et al (2018) Brain motor functional changes after somatosensory discrimination training. Brain Imaging Behav 12(4):1011–1021PubMedCrossRef
27.
go back to reference Carbon M et al (2008) Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain 131(Pt 1):146–154PubMed Carbon M et al (2008) Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain 131(Pt 1):146–154PubMed
28.
29.
30.
go back to reference Delmaire C et al (2007) Structural abnormalities in the cerebellum and sensorimotor circuit in writer’s cramp. Neurology 69(4):376–380PubMedCrossRef Delmaire C et al (2007) Structural abnormalities in the cerebellum and sensorimotor circuit in writer’s cramp. Neurology 69(4):376–380PubMedCrossRef
31.
go back to reference Draganski B et al (2003) “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology 61(9):1228–1231PubMedCrossRef Draganski B et al (2003) “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology 61(9):1228–1231PubMedCrossRef
32.
go back to reference Ramdhani RA et al (2014) What’s special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study. Mov Disord 29(9):1141–1150PubMedPubMedCentralCrossRef Ramdhani RA et al (2014) What’s special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study. Mov Disord 29(9):1141–1150PubMedPubMedCentralCrossRef
33.
go back to reference Carbon M et al (2004) Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology 62(8):1384–1390PubMedCrossRef Carbon M et al (2004) Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology 62(8):1384–1390PubMedCrossRef
34.
go back to reference Luo X et al (2019) Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders. World J Psychiatry Ment Health Res 3(1):1020PubMedPubMedCentral Luo X et al (2019) Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders. World J Psychiatry Ment Health Res 3(1):1020PubMedPubMedCentral
35.
go back to reference Draganski B et al (2009) Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. Neuroimage 47(4):1141–1147PubMedCrossRef Draganski B et al (2009) Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. Neuroimage 47(4):1141–1147PubMedCrossRef
36.
go back to reference Kostic VS et al (2021) Brain structural alterations in patients with GCH1 mutations associated DOPA-responsive dystonia. J Neurol Neurosurg Psychiatry 92(3):332–333PubMedCrossRef Kostic VS et al (2021) Brain structural alterations in patients with GCH1 mutations associated DOPA-responsive dystonia. J Neurol Neurosurg Psychiatry 92(3):332–333PubMedCrossRef
37.
go back to reference Bruggemann N (2021) Contemporary functional neuroanatomy and pathophysiology of dystonia. J Neural Transm (Vienna) 128(4):499–508PubMedCrossRef Bruggemann N (2021) Contemporary functional neuroanatomy and pathophysiology of dystonia. J Neural Transm (Vienna) 128(4):499–508PubMedCrossRef
38.
go back to reference Vo A et al (2013) Early registration of diffusion tensor images for group tractography of dystonia patients. J Magn Reson Imaging 37(1):67–75PubMedCrossRef Vo A et al (2013) Early registration of diffusion tensor images for group tractography of dystonia patients. J Magn Reson Imaging 37(1):67–75PubMedCrossRef
39.
go back to reference Wijemanne S, Jankovic J (2015) Dopa-responsive dystonia–clinical and genetic heterogeneity. Nat Rev Neurol 11(7):414–424PubMedCrossRef Wijemanne S, Jankovic J (2015) Dopa-responsive dystonia–clinical and genetic heterogeneity. Nat Rev Neurol 11(7):414–424PubMedCrossRef
40.
go back to reference Burks JD et al (2018) Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg 128(6):1865–1872PubMedCrossRef Burks JD et al (2018) Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg 128(6):1865–1872PubMedCrossRef
42.
go back to reference Bruggemann N et al (2016) Neuroanatomical changes extend beyond striatal atrophy in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 31:91–97PubMedCrossRef Bruggemann N et al (2016) Neuroanatomical changes extend beyond striatal atrophy in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 31:91–97PubMedCrossRef
43.
45.
go back to reference Corp DT et al (2022) Clinical and structural findings in patients with lesion-induced dystonia: descriptive and quantitative analysis of published cases. Neurology 99(18):e1957–e1967PubMedPubMedCentralCrossRef Corp DT et al (2022) Clinical and structural findings in patients with lesion-induced dystonia: descriptive and quantitative analysis of published cases. Neurology 99(18):e1957–e1967PubMedPubMedCentralCrossRef
47.
go back to reference Fuertinger S et al (2018) Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel. Mov Disord 33(12):1918–1927PubMedPubMedCentralCrossRef Fuertinger S et al (2018) Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel. Mov Disord 33(12):1918–1927PubMedPubMedCentralCrossRef
Metadata
Title
Structural brain heterogeneity underlying symptomatic and asymptomatic genetic dystonia: a multimodal MRI study
Authors
Aleksandra Tomić
Elisabetta Sarasso
Silvia Basaia
Nataša Dragašević-Misković
Marina Svetel
Vladimir S. Kostić
Massimo Filippi
Federica Agosta
Publication date
29-11-2023
Publisher
Springer Berlin Heidelberg
Keyword
Dystonia
Published in
Journal of Neurology / Issue 4/2024
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-023-12098-y

Other articles of this Issue 4/2024

Journal of Neurology 4/2024 Go to the issue