Skip to main content
Top
Published in: Diagnostic Pathology 1/2018

Open Access 01-12-2018 | Research

Dual monoclonal antibody-based sandwich ELISA for detection of in vitro packaged Ebola virus

Authors: Junjie Zai, Kai Yi, Lilan Xie, Jiping Zhu, Xiaoting Feng, Yaoming Li

Published in: Diagnostic Pathology | Issue 1/2018

Login to get access

Abstract

Background

Rapid transmission and high mortality of Ebola virus disease (EVD) highlight a urgent need of large scale, convenient and effective measure for Ebola virus screening. Application of monoclonal antibodies (mAbs) are crucial for establishment of an enzyme-linked immunosorbent assay (ELISA) with high sensitivity and specificity.

Methods

The traditional cell fusion technique was used to generate a panel of hybridomas. Two mAbs were characterized by SDS-PAGE, Western blot, Indirect immunofluorescence assay (IFA). A sandwich ELISA was established using the two mAbs. The detection capability of the ELISA was evaluated.

Results

In the current study, we produced two murine-derived mAbs (designated as 6E3 and 3F21) towards Zaire Ebola virus glycoprotein (GP), the major viral transmembrane spike protein associated with viral attachment. It was shown that 6E3 and 3F21 recognized GP1 and GP2 subunits of the GP respectively. Furthermore, 6E3 and 3F21 bound to corresponding epitopes on GP without reciprocal topographical interpretation. Subsequently, a sandwich ELISA based on the two mAbs were established and evaluated. The detection limit was 3.6 ng/ml, with a linear range of 3.6–100 ng/ml. More importantly, Ebola virus like particles (eVLPs) were able to be detected by this established virus detection measure.

Conclusions

We produced and characterized two murine-derived mAbs (designated as 6E3 and 3F21) towards Zaire Ebola virus glycoprotein (GP), and established a sandwich ELISA based on the mAbs. It was suggested that the sandwich ELISA provided an alternative method for specific and sensitive detection of Ebola virus in the field setting.
Literature
1.
go back to reference Medaglini D, Santoro F, Siegrist CA. Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol. 2018. Medaglini D, Santoro F, Siegrist CA. Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol. 2018.
2.
go back to reference Changula K, Kajihara M, Mweene AS, Takada A. Ebola and Marburg virus diseases in Africa: increased risk of outbreaks in previously unaffected areas? Microbiol Immunol. 2014;58:483–91.CrossRef Changula K, Kajihara M, Mweene AS, Takada A. Ebola and Marburg virus diseases in Africa: increased risk of outbreaks in previously unaffected areas? Microbiol Immunol. 2014;58:483–91.CrossRef
3.
go back to reference Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S, Reeder SA, Quan PL, WI Lipkin RD, Tappero JW, et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4:e1000212.CrossRef Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S, Reeder SA, Quan PL, WI Lipkin RD, Tappero JW, et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4:e1000212.CrossRef
4.
go back to reference Kumar D, Gauthami S, Uma M, Nagalekshmi K, Rao PP, Basu A, Ella KM, Hegde NR. Immunogenicity of a candidate Ebola hemorrhagic fever vaccine in mice based on controlled in vitro expression of ebolavirus glycoprotein. Viral Immunol. 2018. Kumar D, Gauthami S, Uma M, Nagalekshmi K, Rao PP, Basu A, Ella KM, Hegde NR. Immunogenicity of a candidate Ebola hemorrhagic fever vaccine in mice based on controlled in vitro expression of ebolavirus glycoprotein. Viral Immunol. 2018.
5.
go back to reference Elliott LH, Kiley MP, McCormick JB. Descriptive analysis of Ebola virus proteins. Virology. 1985;147:169–76.CrossRef Elliott LH, Kiley MP, McCormick JB. Descriptive analysis of Ebola virus proteins. Virology. 1985;147:169–76.CrossRef
6.
go back to reference QD S, SH He Y, Yi F, Qiu XXL, Jia ZY, Meng QL, Fan XT, Tian RG, Audet J, et al. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine. 2018. QD S, SH He Y, Yi F, Qiu XXL, Jia ZY, Meng QL, Fan XT, Tian RG, Audet J, et al. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine. 2018.
7.
go back to reference Dedkov VG, Magassouba N, Safonova MV, Bodnev SA, Pyankov OV, Camara J, Sylla B, Agafonov AP, Maleev VV, Shipulin GA. Sensitive multiplex real-time RT-qPCR assay for the detection of filoviruses. Health Secur. 2018;16:14–21.CrossRef Dedkov VG, Magassouba N, Safonova MV, Bodnev SA, Pyankov OV, Camara J, Sylla B, Agafonov AP, Maleev VV, Shipulin GA. Sensitive multiplex real-time RT-qPCR assay for the detection of filoviruses. Health Secur. 2018;16:14–21.CrossRef
8.
go back to reference Chertow DS, Kleine C, Edwards JK, Scaini R, Giuliani R, Sprecher A. Ebola virus disease in West Africa--clinical manifestations and management. N Engl J Med. 2014;371:2054–7.CrossRef Chertow DS, Kleine C, Edwards JK, Scaini R, Giuliani R, Sprecher A. Ebola virus disease in West Africa--clinical manifestations and management. N Engl J Med. 2014;371:2054–7.CrossRef
9.
go back to reference Biava M, Colavita F, Marzorati A, Russo D, Pirola D, Cocci A, Petrocelli A, Delli Guanti M, Cataldi G, Kamara TA, et al. Evaluation of a rapid and sensitive RT-qPCR assay for the detection of Ebola virus. J Virol Methods. 2018;252:70–4.CrossRef Biava M, Colavita F, Marzorati A, Russo D, Pirola D, Cocci A, Petrocelli A, Delli Guanti M, Cataldi G, Kamara TA, et al. Evaluation of a rapid and sensitive RT-qPCR assay for the detection of Ebola virus. J Virol Methods. 2018;252:70–4.CrossRef
10.
go back to reference Yoshida R, Muramatsu S, Akita H, Saito Y, Kuwahara M, Kato D, Changula K, Miyamoto H, Kajihara M, Manzoor R, et al. Development of an Immunochromatography assay (QuickNavi-Ebola) to detect multiple species of ebolaviruses. J Infect Dis. 2016;214:S185–91.CrossRef Yoshida R, Muramatsu S, Akita H, Saito Y, Kuwahara M, Kato D, Changula K, Miyamoto H, Kajihara M, Manzoor R, et al. Development of an Immunochromatography assay (QuickNavi-Ebola) to detect multiple species of ebolaviruses. J Infect Dis. 2016;214:S185–91.CrossRef
11.
go back to reference Zhang Y, He Y, Li L, Liang S, Yan M, Ren D, Yang Z, Zhao W, Miao L, Zhang H, et al. Development and characterization of an HPV18 detection kit using two novel HPV18 type-specific monoclonal antibodies. Diagn Pathol. 2018;13:55.CrossRef Zhang Y, He Y, Li L, Liang S, Yan M, Ren D, Yang Z, Zhao W, Miao L, Zhang H, et al. Development and characterization of an HPV18 detection kit using two novel HPV18 type-specific monoclonal antibodies. Diagn Pathol. 2018;13:55.CrossRef
12.
go back to reference Pose AG, Rodriguez ER, Pineiro MJ, Montesino R, Sanchez O, Toledo JR. Quantitative ELISA sandwich for a new vaccine against avian influenza virus H5N1. J Immunol Methods. 2018;459:70–5.CrossRef Pose AG, Rodriguez ER, Pineiro MJ, Montesino R, Sanchez O, Toledo JR. Quantitative ELISA sandwich for a new vaccine against avian influenza virus H5N1. J Immunol Methods. 2018;459:70–5.CrossRef
13.
go back to reference Sheng M, Zhong Y, Chen Y, J D, X J, Zhao C, Zhang G, Zhang L, Liu K, Yang N, et al. Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of Ebola virus glycoprotein in vitro. Sci China Life Sci. 2014;57:959–72.CrossRef Sheng M, Zhong Y, Chen Y, J D, X J, Zhao C, Zhang G, Zhang L, Liu K, Yang N, et al. Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of Ebola virus glycoprotein in vitro. Sci China Life Sci. 2014;57:959–72.CrossRef
14.
go back to reference Li Y, Liu F, Han C, Yan H. Monoclonal antibody that blocks the toll-like receptor 5 binding region of flagellin. Hybridoma (Larchmt). 2012;31:60–2.CrossRef Li Y, Liu F, Han C, Yan H. Monoclonal antibody that blocks the toll-like receptor 5 binding region of flagellin. Hybridoma (Larchmt). 2012;31:60–2.CrossRef
15.
go back to reference Huang W, Hu K, Luo S, Zhang M, Li C, Jin W, Liu Y, Griffin GE, Shattock RJ, Hu Q. Herpes simplex virus type 2 infection of human epithelial cells induces CXCL9 expression and CD4+ T cell migration via activation of p38-CCAAT/enhancer-binding protein-beta pathway. J Immunol. 2012;188:6247–57.CrossRef Huang W, Hu K, Luo S, Zhang M, Li C, Jin W, Liu Y, Griffin GE, Shattock RJ, Hu Q. Herpes simplex virus type 2 infection of human epithelial cells induces CXCL9 expression and CD4+ T cell migration via activation of p38-CCAAT/enhancer-binding protein-beta pathway. J Immunol. 2012;188:6247–57.CrossRef
16.
go back to reference Wu CJ, Li TL, Huang HW, Tao MH, Chan YL. Development of an effective Japanese encephalitis virus-specific DNA vaccine. Microbes Infect. 2006;8:2578–86.CrossRef Wu CJ, Li TL, Huang HW, Tao MH, Chan YL. Development of an effective Japanese encephalitis virus-specific DNA vaccine. Microbes Infect. 2006;8:2578–86.CrossRef
17.
go back to reference Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, Yang J, Zhou D, Shi W, He B, et al. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS One. 2012;7:e34947.CrossRef Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, Yang J, Zhou D, Shi W, He B, et al. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS One. 2012;7:e34947.CrossRef
18.
go back to reference Li Y, Hou L, Ye J, Liu X, Dan H, Jin M, Chen H, Cao S. Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine. J Virol Methods. 2010;168:51–6.CrossRef Li Y, Hou L, Ye J, Liu X, Dan H, Jin M, Chen H, Cao S. Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine. J Virol Methods. 2010;168:51–6.CrossRef
19.
go back to reference Zhang M, Liu Y, Wang P, Guan X, He S, Luo S, Li C, K H, Jin W, T D, et al. HSV-2 immediate-early protein US1 inhibits IFN-beta production by suppressing association of IRF-3 with IFN-beta promoter. J Immunol. 2015;194:3102–15.CrossRef Zhang M, Liu Y, Wang P, Guan X, He S, Luo S, Li C, K H, Jin W, T D, et al. HSV-2 immediate-early protein US1 inhibits IFN-beta production by suppressing association of IRF-3 with IFN-beta promoter. J Immunol. 2015;194:3102–15.CrossRef
20.
go back to reference Qiu X, Alimonti JB, Melito PL, Fernando L, Stroher U, Jones SM. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin Immunol. 2011;141:218–27.CrossRef Qiu X, Alimonti JB, Melito PL, Fernando L, Stroher U, Jones SM. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin Immunol. 2011;141:218–27.CrossRef
21.
go back to reference Xue J, Li Y, X X, J Y, Yan H. EV71 infection correlates with viral IgG preexisting at pharyngo-laryngeal mucosa in children. Virol Sin. 2015;30:146–52.CrossRef Xue J, Li Y, X X, J Y, Yan H. EV71 infection correlates with viral IgG preexisting at pharyngo-laryngeal mucosa in children. Virol Sin. 2015;30:146–52.CrossRef
22.
go back to reference Xie L, Chen W, Li J, Li Y. Evidence for multiple applications of monoclonal antibody 5G10. Monoclon Antib Immunodiagn Immunother. 2018;37:175–9.CrossRef Xie L, Chen W, Li J, Li Y. Evidence for multiple applications of monoclonal antibody 5G10. Monoclon Antib Immunodiagn Immunother. 2018;37:175–9.CrossRef
23.
go back to reference Takada A. Filovirus tropism: cellular molecules for viral entry. Front Microbiol. 2012;3:34.CrossRef Takada A. Filovirus tropism: cellular molecules for viral entry. Front Microbiol. 2012;3:34.CrossRef
24.
go back to reference Marzi A, Feldmann H. Ebola virus vaccines: an overview of current approaches. Expert Rev Vaccines. 2014;13:521–31.CrossRef Marzi A, Feldmann H. Ebola virus vaccines: an overview of current approaches. Expert Rev Vaccines. 2014;13:521–31.CrossRef
25.
go back to reference Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454:177–82.CrossRef Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454:177–82.CrossRef
26.
go back to reference Han BS, Jang HY, Racine T, Qiu X, Sin JI. Purification and characterization of monoclonal IgG antibodies recognizing Ebola virus glycoprotein. Clin Exp Vaccine Res. 2018;7:119–28.CrossRef Han BS, Jang HY, Racine T, Qiu X, Sin JI. Purification and characterization of monoclonal IgG antibodies recognizing Ebola virus glycoprotein. Clin Exp Vaccine Res. 2018;7:119–28.CrossRef
27.
go back to reference Cross RW, Boisen ML, Millett MM, Nelson DS, Oottamasathien D, Hartnett JN, Jones AB, Goba A, Momoh M, Fullah M, et al. Analytical validation of the ReEBOV antigen rapid test for point-of-care diagnosis of Ebola virus infection. J Infect Dis. 2016;214:S210–7.CrossRef Cross RW, Boisen ML, Millett MM, Nelson DS, Oottamasathien D, Hartnett JN, Jones AB, Goba A, Momoh M, Fullah M, et al. Analytical validation of the ReEBOV antigen rapid test for point-of-care diagnosis of Ebola virus infection. J Infect Dis. 2016;214:S210–7.CrossRef
Metadata
Title
Dual monoclonal antibody-based sandwich ELISA for detection of in vitro packaged Ebola virus
Authors
Junjie Zai
Kai Yi
Lilan Xie
Jiping Zhu
Xiaoting Feng
Yaoming Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2018
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-018-0773-1

Other articles of this Issue 1/2018

Diagnostic Pathology 1/2018 Go to the issue