Skip to main content
Top
Published in: Lasers in Medical Science 6/2020

01-08-2020 | Original Article

Dual effect of blue light on Fusariumsolani clinical corneal isolates in vitro

Authors: Yingyu Li, Pei Zhang, Chen Huang, Wei Wang

Published in: Lasers in Medical Science | Issue 6/2020

Login to get access

Abstract

The purpose was to investigate the effect of daylight-intensity blue light on F. solani isolated from the cornea of patients with fungal keratitis. Spore suspensions of 5 F. solani strains (one standard strain and 4 clinical corneal isolates) were prepared in 6-well plates. Blue light groups were irradiated by a light-emitting diode (LED) device with a peak wavelength of 454 nm at 0.5 mW/cm2 for 0 to 48 h, while the controls were maintained in darkness. Hyphal morphology in the 6-well plates was recorded at 0, 12, 24, 36, 48 h. One hundred microliters of spore suspensions of each strain at these five time points was transferred to SGA plates and cultured for 36 h at 29 °C; the number of colonies formed was counted as a measure of conidia quality and viability. Blue light has dual effects on F. solani. The hyphal length of F. solani exposed to blue light was significantly shorter than that of the control (P < 0.01), indicating that fungal growth was inhibited. Meanwhile, instead of reducing the viability of spores, blue light significantly enhanced the conidia quality and viability after at least 24 h irradiation. Daylight-intensity blue light exposure will inhibit the hyphal growth of F. solani but promote conidiation, which would be more harmful to fungal keratitis. Eliminating the influence of blue light for these patients should be taken into account.
Literature
1.
go back to reference Garg P, Gopinathan U, Choudhary K et al (2000) Keratomycosis: clinical and microbiologic experience with dematiaceous fungi. Ophthalmology 107:574–580CrossRef Garg P, Gopinathan U, Choudhary K et al (2000) Keratomycosis: clinical and microbiologic experience with dematiaceous fungi. Ophthalmology 107:574–580CrossRef
2.
go back to reference Maharana PK, Sharma N, Nagpal R, Jhanji V, Das S, Vajpayee RB (2016) Recent advances in diagnosis and management of mycotic keratitis. Indian J Ophthalmol 64(5):346–357CrossRef Maharana PK, Sharma N, Nagpal R, Jhanji V, Das S, Vajpayee RB (2016) Recent advances in diagnosis and management of mycotic keratitis. Indian J Ophthalmol 64(5):346–357CrossRef
3.
4.
go back to reference Tupaki-Sreepurna A, Al-Hatmi AMS, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinic-mycological study of keratitis infections in Chennai, India. Mycoses 60:230–233CrossRef Tupaki-Sreepurna A, Al-Hatmi AMS, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinic-mycological study of keratitis infections in Chennai, India. Mycoses 60:230–233CrossRef
5.
go back to reference Rose-Nussbaumer J, Venkatesh Prajna N, Tiruvengada Krishnan K, Mascaren-has J, Rajaraman R, Srinivasan M et al (2015) Vision-related quality-of-life outcomes in the mycotic ulcer treatment trial I: a randomized clinical trial. JAMA Ophthalmol 133:642–646CrossRef Rose-Nussbaumer J, Venkatesh Prajna N, Tiruvengada Krishnan K, Mascaren-has J, Rajaraman R, Srinivasan M et al (2015) Vision-related quality-of-life outcomes in the mycotic ulcer treatment trial I: a randomized clinical trial. JAMA Ophthalmol 133:642–646CrossRef
6.
go back to reference Thomas PA, Kaliamurthy J (2013) Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect 19(3):210–220CrossRef Thomas PA, Kaliamurthy J (2013) Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect 19(3):210–220CrossRef
7.
go back to reference Oechsler RA, Feilmeier MR, Ledee D et al (2009) Utility of molecular sequence analysis of the ITS rRNA region for identification of Fusarium spp from ocular sources. Invest Ophthalmol Vis Sci 50:2230–2236CrossRef Oechsler RA, Feilmeier MR, Ledee D et al (2009) Utility of molecular sequence analysis of the ITS rRNA region for identification of Fusarium spp from ocular sources. Invest Ophthalmol Vis Sci 50:2230–2236CrossRef
8.
go back to reference O’Donnell K, Sarver BA, Brandt M et al (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitisoutbreaks of 2005 and 2006. J Clin Microbiol 45:2235–2248CrossRef O’Donnell K, Sarver BA, Brandt M et al (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitisoutbreaks of 2005 and 2006. J Clin Microbiol 45:2235–2248CrossRef
9.
go back to reference Herkert PF, Al-Hatmi AMS, de Oliveira Salvador GL, Muro MD, Pinheiro RL, Nucci M, Queiroz-Telles F, de Hoog GS, Meis JF (2019) Molecular characterization and antifungal susceptibility of clinical Fusarium species from Brazil. Front Microbiol 10:737CrossRef Herkert PF, Al-Hatmi AMS, de Oliveira Salvador GL, Muro MD, Pinheiro RL, Nucci M, Queiroz-Telles F, de Hoog GS, Meis JF (2019) Molecular characterization and antifungal susceptibility of clinical Fusarium species from Brazil. Front Microbiol 10:737CrossRef
10.
go back to reference Tupaki-Sreepurna A, Al-Hatmi AM, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinico-mycological study of keratitis infections in Chennai. India Mycoses 60:230–233CrossRef Tupaki-Sreepurna A, Al-Hatmi AM, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinico-mycological study of keratitis infections in Chennai. India Mycoses 60:230–233CrossRef
11.
go back to reference Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158CrossRef Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158CrossRef
12.
go back to reference Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M (2018) Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 94(3):445–458. Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M (2018) Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 94(3):445–458.
13.
go back to reference Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martínez-Hernández P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross-talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506CrossRef Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martínez-Hernández P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross-talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506CrossRef
14.
go back to reference Purschwitz J, Müller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571CrossRef Purschwitz J, Müller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571CrossRef
15.
go back to reference Fanelli F, Schmidt-Heydt M, Haidukowski M, Susca A, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, conidiation and fumonisin production by Fusarium verticillioides. Fungal Biol 116:241–248CrossRef Fanelli F, Schmidt-Heydt M, Haidukowski M, Susca A, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, conidiation and fumonisin production by Fusarium verticillioides. Fungal Biol 116:241–248CrossRef
16.
go back to reference Fanelli F, Schmidt-Heydt M, Haidukowski M, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum. Int J Food Microbiol 153:148–153CrossRef Fanelli F, Schmidt-Heydt M, Haidukowski M, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum. Int J Food Microbiol 153:148–153CrossRef
17.
go back to reference De Lucca AJ, Carter-Wientjes C, Williams KA, Bhatnagar D (2012) Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett Appl Microbiol 55(6):460–466CrossRef De Lucca AJ, Carter-Wientjes C, Williams KA, Bhatnagar D (2012) Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett Appl Microbiol 55(6):460–466CrossRef
18.
go back to reference Trzaska WJ, Wrigley HE, Thwaite JE, May RC (2017) Species-specific antifungal activity of blue light. Sci Rep 7(1):4605CrossRef Trzaska WJ, Wrigley HE, Thwaite JE, May RC (2017) Species-specific antifungal activity of blue light. Sci Rep 7(1):4605CrossRef
19.
go back to reference Marek V, Mélik-Parsadaniantz S, Villette T, Montoya F, Baudouin C, Brignole-Baudouin F, Denoyer A (2018) Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med 126:27–40CrossRef Marek V, Mélik-Parsadaniantz S, Villette T, Montoya F, Baudouin C, Brignole-Baudouin F, Denoyer A (2018) Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med 126:27–40CrossRef
20.
go back to reference Núñez-Álvarez C, Osborne NN (2019) Enhancement of corneal epithelium cell survival, proliferation and migration by red light: relevance to corneal wound healing. Exp Eye Res 180:231–241CrossRef Núñez-Álvarez C, Osborne NN (2019) Enhancement of corneal epithelium cell survival, proliferation and migration by red light: relevance to corneal wound healing. Exp Eye Res 180:231–241CrossRef
21.
go back to reference Anutarapongpan O, Maestre-Mesa J, Alfonso EC, O’Brien TP, Miller D (2018) Multiplex polymerase chain reaction assay for screening of mycotoxin genes from ocular isolates of Fusarium species. Cornea 37(8):1042–1046CrossRef Anutarapongpan O, Maestre-Mesa J, Alfonso EC, O’Brien TP, Miller D (2018) Multiplex polymerase chain reaction assay for screening of mycotoxin genes from ocular isolates of Fusarium species. Cornea 37(8):1042–1046CrossRef
22.
go back to reference Hazlett L, Suvas S, McClellan S, Ekanayaka S (2016) Challenges of corneal infections. Expert Rev Ophthalmol 11:285–297CrossRef Hazlett L, Suvas S, McClellan S, Ekanayaka S (2016) Challenges of corneal infections. Expert Rev Ophthalmol 11:285–297CrossRef
23.
go back to reference Liang YI, Lu LM, Chen Y, Lin YK (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12:23–27CrossRef Liang YI, Lu LM, Chen Y, Lin YK (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12:23–27CrossRef
24.
go back to reference Lembo AJ, Ganz RA, Sheth S, Cave D, Kelly C, Levin P, Kazlas PT, Baldwin PC 3rd, Lindmark WR, McGrath JR, Hamblin MR (2009) Treatment of Helicobacter pylori infection with intragastric violet light phototherapy: a pilot clinical trial. Lasers Surg Med 41:337–344CrossRef Lembo AJ, Ganz RA, Sheth S, Cave D, Kelly C, Levin P, Kazlas PT, Baldwin PC 3rd, Lindmark WR, McGrath JR, Hamblin MR (2009) Treatment of Helicobacter pylori infection with intragastric violet light phototherapy: a pilot clinical trial. Lasers Surg Med 41:337–344CrossRef
25.
go back to reference Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, Sherwood ME, Baer DG, Hamblin MR, Dai T (2014) Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis 209:1963–1971CrossRef Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, Sherwood ME, Baer DG, Hamblin MR, Dai T (2014) Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis 209:1963–1971CrossRef
26.
go back to reference Zhang Y, Zhu Y, Chen J, Wang Y, Sherwood ME, Murray CK, Vrahas MS, Hooper DC, Hamblin MR, Dai T (2016) Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies. Virulence 7:536–545CrossRef Zhang Y, Zhu Y, Chen J, Wang Y, Sherwood ME, Murray CK, Vrahas MS, Hooper DC, Hamblin MR, Dai T (2016) Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies. Virulence 7:536–545CrossRef
27.
go back to reference Lee HS, Cui L, Li Y et al (2016) Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11(8):e0161041CrossRef Lee HS, Cui L, Li Y et al (2016) Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11(8):e0161041CrossRef
28.
go back to reference Behar-Cohen F, Martinsons C, Viénot F et al (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30(4):239–257CrossRef Behar-Cohen F, Martinsons C, Viénot F et al (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30(4):239–257CrossRef
29.
go back to reference Huang C, Zhang P, Wang W, Xu Y, Wang M, Chen X, Dong X (2014) Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis 19(6):922–932CrossRef Huang C, Zhang P, Wang W, Xu Y, Wang M, Chen X, Dong X (2014) Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis 19(6):922–932CrossRef
30.
go back to reference Tan KK (1976)Light-induced synchronous conidiation in the fungus Botrytis cinerea. J Gen Microbiol 93(2):278–282CrossRef Tan KK (1976)Light-induced synchronous conidiation in the fungus Botrytis cinerea. J Gen Microbiol 93(2):278–282CrossRef
31.
go back to reference Kumagai T (1989) Temperature and mycochrome system in near-UV light inducible and blue light reversible photoinduction of conidiation Alternaria tomato. Photochem Photobiol Sci 50:793e798 Kumagai T (1989) Temperature and mycochrome system in near-UV light inducible and blue light reversible photoinduction of conidiation Alternaria tomato. Photochem Photobiol Sci 50:793e798
32.
go back to reference Zhu JC, Wang XJ, Zhang G, Su J, Zhu M (2006) Glucoamylase enhancement regulated by blue light in Aspergillus niger. Wei Sheng Wu Xue Bao 46(5):734–739PubMed Zhu JC, Wang XJ, Zhang G, Su J, Zhu M (2006) Glucoamylase enhancement regulated by blue light in Aspergillus niger. Wei Sheng Wu Xue Bao 46(5):734–739PubMed
33.
go back to reference Kiryu H, Yoshida S, Suenaga Y, Asahi M (1991) Invasion and survival of Fusarium solani in the dexamethasone-treated cornea of rabbits. J Med Vet Mycol 29(6):395–406CrossRef Kiryu H, Yoshida S, Suenaga Y, Asahi M (1991) Invasion and survival of Fusarium solani in the dexamethasone-treated cornea of rabbits. J Med Vet Mycol 29(6):395–406CrossRef
34.
go back to reference Robertson MD, Seaton A, Milne LJ, Raeburn JA (1987) Resistance of spores of Aspergillus fumigatus to ingestion by phagocytic cells. Thorax 42(6):466–472CrossRef Robertson MD, Seaton A, Milne LJ, Raeburn JA (1987) Resistance of spores of Aspergillus fumigatus to ingestion by phagocytic cells. Thorax 42(6):466–472CrossRef
35.
go back to reference Choy CK, Benzie IF, Cho P (2005)UV-mediated DNA strand breaks in corneal epithelial cells assessed using the comet assay procedure. Photochem Photobiol 81(3):493–497CrossRef Choy CK, Benzie IF, Cho P (2005)UV-mediated DNA strand breaks in corneal epithelial cells assessed using the comet assay procedure. Photochem Photobiol 81(3):493–497CrossRef
36.
go back to reference Sliney DH (2006) Risks of occupational exposure to optical radiation. Med Lav 97(2):215–220PubMed Sliney DH (2006) Risks of occupational exposure to optical radiation. Med Lav 97(2):215–220PubMed
37.
go back to reference Stamatacos C, Harrison JL (2014) The possible ocular hazards of LED dental illumination applications. J Mich Dent Assoc 96(4):34–39PubMed Stamatacos C, Harrison JL (2014) The possible ocular hazards of LED dental illumination applications. J Mich Dent Assoc 96(4):34–39PubMed
38.
go back to reference Moorhead S, Maclean M, MacGregor SJ, Anderson JG (2016) Comparative sensitivity of Trichophyton and Aspergillus conidia to inactivation by violet-blue light exposure. Photomed Laser Surg 34:36–41CrossRef Moorhead S, Maclean M, MacGregor SJ, Anderson JG (2016) Comparative sensitivity of Trichophyton and Aspergillus conidia to inactivation by violet-blue light exposure. Photomed Laser Surg 34:36–41CrossRef
39.
go back to reference Lee HS, Cui L, Li Y, Choi JS, Choi JH, Li ZR, Kim GE, Choi W, Yoon KC (2016) Correction: influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11(11):e0167671CrossRef Lee HS, Cui L, Li Y, Choi JS, Choi JH, Li ZR, Kim GE, Choi W, Yoon KC (2016) Correction: influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11(11):e0167671CrossRef
40.
go back to reference Zhao ZC, Zhou Y, Tan G, Li J (2018) Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol 11(12):1999–2003PubMedPubMedCentral Zhao ZC, Zhou Y, Tan G, Li J (2018) Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol 11(12):1999–2003PubMedPubMedCentral
Metadata
Title
Dual effect of blue light on Fusariumsolani clinical corneal isolates in vitro
Authors
Yingyu Li
Pei Zhang
Chen Huang
Wei Wang
Publication date
01-08-2020
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 6/2020
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02911-4

Other articles of this Issue 6/2020

Lasers in Medical Science 6/2020 Go to the issue