Skip to main content
Top
Published in: Neurocritical Care 2/2017

01-10-2017 | Review Article

Drug Interactions in Neurocritical Care

Authors: Brian Spoelhof, Salia Farrokh, Lucia Rivera-Lara

Published in: Neurocritical Care | Issue 2/2017

Login to get access

Abstract

Drug–drug interactions (DDIs) are common and avoidable complications that are associated with poor patient outcomes. Neurocritical care patients may be at particular risk for DDIs due to alterations in pharmacokinetic profiles and exposure to medications with a high DDI risk. This review describes the principles of DDI pharmacology, common and severe DDIs in Neurocritical care, and recommendations to minimize adverse outcomes. A review of published literature was performed using PubMed by searching for ‘Drug Interaction’ and several high DDI risk and common neurocritical care medications. Key medication classes included anticoagulants, antimicrobials, antiepileptics, antihypertensives, sedatives, and selective serotonin reuptake inhibitors. Additional literature was also reviewed to determine the risk in neurocritical care and potential therapeutic alternatives. Clinicians should be aware of interactions in this setting, the long-term complications, and therapeutic alternatives.
Literature
1.
go back to reference Moura C, Acurcio F, Belo N. Drug–drug interactions associated with length of stay and cost of hospitalization. J Pharm Pharm Sci. 2009;12(3):266–72.CrossRefPubMed Moura C, Acurcio F, Belo N. Drug–drug interactions associated with length of stay and cost of hospitalization. J Pharm Pharm Sci. 2009;12(3):266–72.CrossRefPubMed
2.
go back to reference Papadopoulos J. Common drug interactions leading to adverse drug events in the intensive care unit: management and pharmacokinetic considerations. In: Papadopoulos J, Cooper B, Kane-Gill S, Corbett SM, Jeffrey B, editors. Drug-induced complications in the critically ill patient: a guide for recognition and treatment. 1st ed. Mt Prospect: Society of Critical Care Medicine; 2012. p. 401–12. Papadopoulos J. Common drug interactions leading to adverse drug events in the intensive care unit: management and pharmacokinetic considerations. In: Papadopoulos J, Cooper B, Kane-Gill S, Corbett SM, Jeffrey B, editors. Drug-induced complications in the critically ill patient: a guide for recognition and treatment. 1st ed. Mt Prospect: Society of Critical Care Medicine; 2012. p. 401–12.
3.
go back to reference Uijtendaal EV, Van Harssel LLM, Hugenholtz GWK, et al. Analysis of potential drug–drug interactions in medical intensive care unit patients. Pharmacotherapy. 2014;34(3):213–9.CrossRefPubMed Uijtendaal EV, Van Harssel LLM, Hugenholtz GWK, et al. Analysis of potential drug–drug interactions in medical intensive care unit patients. Pharmacotherapy. 2014;34(3):213–9.CrossRefPubMed
4.
go back to reference Smithburger PL, Kane-Gill SL, Seybert AL. Drug–drug interactions in the medical intensive care unit: an assessment of frequency, severity and the medications involved. Int J Pharm Pract. 2012;20(6):402–8.CrossRefPubMed Smithburger PL, Kane-Gill SL, Seybert AL. Drug–drug interactions in the medical intensive care unit: an assessment of frequency, severity and the medications involved. Int J Pharm Pract. 2012;20(6):402–8.CrossRefPubMed
5.
go back to reference Smithburger PL, Kane-Gill SL, Seybert AL. Drug–drug interactions in cardiac and cardiothoracic intensive care units: An analysis of patients in an academic medical centre in the US. Drug Saf. 2010;33(10):879–888. Smithburger PL, Kane-Gill SL, Seybert AL. Drug–drug interactions in cardiac and cardiothoracic intensive care units: An analysis of patients in an academic medical centre in the US. Drug Saf. 2010;33(10):879–888.
6.
go back to reference Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;300(3):1036–1045. Accessed 7 Sept 2016. Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;300(3):1036–1045. Accessed 7 Sept 2016.
7.
go back to reference Derelanko M, Hollinger M. Metabolism and toxicokinetics of xenobiotics. In: Derelanko M, Hollinger M, editors. Handbook of toxicology. 1st ed. New York: CRC Press; 1995. p. 539–79. Derelanko M, Hollinger M. Metabolism and toxicokinetics of xenobiotics. In: Derelanko M, Hollinger M, editors. Handbook of toxicology. 1st ed. New York: CRC Press; 1995. p. 539–79.
8.
go back to reference Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–246. Accessed 7 Sept 2016. Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–246. Accessed 7 Sept 2016.
9.
go back to reference Kacew S, Lee B-M. Biotransformation of Toxicants. Lu’s Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment, Sixth Edition. 4th ed. New York: Taylor and Francis; 2002. p. 26–37. Kacew S, Lee B-M. Biotransformation of Toxicants. Lu’s Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment, Sixth Edition. 4th ed. New York: Taylor and Francis; 2002. p. 26–37.
10.
go back to reference DiPiro J, editor. Pharmacotherapy: a pathophysiologic approach. 4th ed. Stamford: Appleton & Lange; 1999. DiPiro J, editor. Pharmacotherapy: a pathophysiologic approach. 4th ed. Stamford: Appleton & Lange; 1999.
11.
go back to reference Cupp MJ, Tracy TS. Cytochrome P450: new nomenclature and clinical implications. Am Fam Physician. 1998;57(1):107–116. Accessed 7 Sept 2016. Cupp MJ, Tracy TS. Cytochrome P450: new nomenclature and clinical implications. Am Fam Physician. 1998;57(1):107–116. Accessed 7 Sept 2016.
12.
go back to reference Goodman L, Limbird L, Milnoff P, Gilman A, Hardman J, editors. Goodman & Gilman’s: the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 1996. Goodman L, Limbird L, Milnoff P, Gilman A, Hardman J, editors. Goodman & Gilman’s: the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 1996.
13.
go back to reference Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.CrossRefPubMed Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.CrossRefPubMed
14.
go back to reference Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 18(1):84–112. Accessed 7 Sept 2016. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 18(1):84–112. Accessed 7 Sept 2016.
15.
go back to reference Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–396. Accessed 7 Sept 2016. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–396. Accessed 7 Sept 2016.
16.
go back to reference Belpaire FM, Bogaert MG. Cytochrome P450: genetic polymorphism and drug interactions. Acta Clin Belg. 1996;51(4):254–260. Accessed 7 Sept 2016. Belpaire FM, Bogaert MG. Cytochrome P450: genetic polymorphism and drug interactions. Acta Clin Belg. 1996;51(4):254–260. Accessed 7 Sept 2016.
17.
go back to reference Schinkel AH. The physiological function of drug-transporting P-glycoproteins. Semin Cancer Biol. 1997;8(3):161–70.CrossRefPubMed Schinkel AH. The physiological function of drug-transporting P-glycoproteins. Semin Cancer Biol. 1997;8(3):161–70.CrossRefPubMed
18.
go back to reference van Helvoort A, Smith AJ, Sprong H, et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996;87(3):507–517. Accessed 7 Sept 2016. van Helvoort A, Smith AJ, Sprong H, et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996;87(3):507–517. Accessed 7 Sept 2016.
19.
go back to reference Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84(21):7735–7738. Accessed 7 Sept 2016. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84(21):7735–7738. Accessed 7 Sept 2016.
20.
go back to reference Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38(9):1277–1287. Accessed 7 Sept 2016. Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38(9):1277–1287. Accessed 7 Sept 2016.
21.
go back to reference Naidech AM, Kreiter KT, Janjua N, et al. Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. Stroke. 2005;36(3):583–7.CrossRefPubMed Naidech AM, Kreiter KT, Janjua N, et al. Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. Stroke. 2005;36(3):583–7.CrossRefPubMed
22.
go back to reference Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol. 1991;32(3):335–40.CrossRefPubMedPubMedCentral Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol. 1991;32(3):335–40.CrossRefPubMedPubMedCentral
23.
go back to reference Sandow N, Diesing D, Sarrafzadeh A, Vajkoczy P, Wolf S. Nimodipine dose reductions in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2016;25(1):29–39.CrossRef Sandow N, Diesing D, Sarrafzadeh A, Vajkoczy P, Wolf S. Nimodipine dose reductions in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2016;25(1):29–39.CrossRef
24.
go back to reference Murphy-Human T, Welch E, Zipfel G, Diringer MN, Dhar R. Comparison of short-duration levetiracetam with extended-course phenytoin for seizure prophylaxis after subarachnoid hemorrhage. World Neurosurg. 2011;75(2):269–74.CrossRefPubMed Murphy-Human T, Welch E, Zipfel G, Diringer MN, Dhar R. Comparison of short-duration levetiracetam with extended-course phenytoin for seizure prophylaxis after subarachnoid hemorrhage. World Neurosurg. 2011;75(2):269–74.CrossRefPubMed
25.
go back to reference Szaflarski JP, Sangha KS, Lindsell CJ, Shutter LA. Prospective, randomized, single-blinded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care. 2010;12(2):165–172. Szaflarski JP, Sangha KS, Lindsell CJ, Shutter LA. Prospective, randomized, single-blinded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care. 2010;12(2):165–172.
26.
go back to reference Meisheri YV. Simultaneous phenytoin and warfarin toxicity on chronic concomitant therapy. J Assoc Physicians India. 1996;44(9):661–662. Accessed 7 Sept 2016. Meisheri YV. Simultaneous phenytoin and warfarin toxicity on chronic concomitant therapy. J Assoc Physicians India. 1996;44(9):661–662. Accessed 7 Sept 2016.
27.
go back to reference Hansen JM, Kristensen M, Skovsted L, Christensen LK. Dicoumarol-induced diphenylhydantoin intoxication. Lancet. 1966;2(7457):265–266. Accessed 7 Sept 2016. Hansen JM, Kristensen M, Skovsted L, Christensen LK. Dicoumarol-induced diphenylhydantoin intoxication. Lancet. 1966;2(7457):265–266. Accessed 7 Sept 2016.
28.
go back to reference Hassan Y, Awaisu A, Aziz NA, Ismail O. The complexity of achieving anticoagulation control in the face of warfarin–phenytoin interaction: an Asian case report. Pharm World Sci. 2005;27(1):16–19. Accessed 7 Sept 2016. Hassan Y, Awaisu A, Aziz NA, Ismail O. The complexity of achieving anticoagulation control in the face of warfarin–phenytoin interaction: an Asian case report. Pharm World Sci. 2005;27(1):16–19. Accessed 7 Sept 2016.
29.
go back to reference Wiggins BS, Northup A, Johnson D, Senfield J. Reduced anticoagulant effect of dabigatran in a patient receiving concomitant phenytoin. Pharmacotherapy. 2016;36(2):e5–7.CrossRefPubMed Wiggins BS, Northup A, Johnson D, Senfield J. Reduced anticoagulant effect of dabigatran in a patient receiving concomitant phenytoin. Pharmacotherapy. 2016;36(2):e5–7.CrossRefPubMed
30.
go back to reference Altena R, van Roon E, Folkeringa R, de Wit H, Hoogendoorn M. Clinical challenges related to novel oral anticoagulants: drug–drug interactions and monitoring. Haematologica. 2014;99(2):e26–7.CrossRefPubMedPubMedCentral Altena R, van Roon E, Folkeringa R, de Wit H, Hoogendoorn M. Clinical challenges related to novel oral anticoagulants: drug–drug interactions and monitoring. Haematologica. 2014;99(2):e26–7.CrossRefPubMedPubMedCentral
31.
go back to reference Nolan PE, Marcus FI, Hoyer GL, Bliss M, Gear K. Pharmacokinetic interaction between intravenous phenytoin and amiodarone in healthy volunteers. Clin Pharmacol Ther. 1989;46(1):43–9.CrossRefPubMed Nolan PE, Marcus FI, Hoyer GL, Bliss M, Gear K. Pharmacokinetic interaction between intravenous phenytoin and amiodarone in healthy volunteers. Clin Pharmacol Ther. 1989;46(1):43–9.CrossRefPubMed
32.
go back to reference Nolan PE, Erstad BL, Hoyer GL, Bliss M, Gear K, Marcus FI. Steady-state interaction between amiodarone and phenytoin in normal subjects. Am J Cardiol. 1990;65(18):1252–7.CrossRefPubMed Nolan PE, Erstad BL, Hoyer GL, Bliss M, Gear K, Marcus FI. Steady-state interaction between amiodarone and phenytoin in normal subjects. Am J Cardiol. 1990;65(18):1252–7.CrossRefPubMed
33.
go back to reference McGOVERN B. Possible interaction between amiodarone and phenytoin. Ann Intern Med. 1984;101(5):650.CrossRefPubMed McGOVERN B. Possible interaction between amiodarone and phenytoin. Ann Intern Med. 1984;101(5):650.CrossRefPubMed
34.
go back to reference Gore JM, Haffajee CI, Alpert JS. Interaction of amiodarone and diphenylhydantoin. Am J Cardiol. 1984;54(8):1145.CrossRefPubMed Gore JM, Haffajee CI, Alpert JS. Interaction of amiodarone and diphenylhydantoin. Am J Cardiol. 1984;54(8):1145.CrossRefPubMed
35.
go back to reference Nolan PE, Marcus FI, Karol MD, Hoyer GL, Gear K. Effect of phenytoin on the clinical pharmacokinetics of amiodarone. J Clin Pharmacol. 1990;30(12):1112–9.CrossRefPubMed Nolan PE, Marcus FI, Karol MD, Hoyer GL, Gear K. Effect of phenytoin on the clinical pharmacokinetics of amiodarone. J Clin Pharmacol. 1990;30(12):1112–9.CrossRefPubMed
36.
go back to reference Chung J-Y, Cho J-Y, Yu K-S, et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther. 2005;77(6):486–94.CrossRefPubMed Chung J-Y, Cho J-Y, Yu K-S, et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther. 2005;77(6):486–94.CrossRefPubMed
37.
go back to reference Anderson GD, Gidal BE, Kantor ED, Wilensky AJ. Lorazepam-valproate interaction: studies in normal subjects and isolated perfused rat liver. Epilepsia. 35(1):221–225. Accessed 7 Sept 2016. Anderson GD, Gidal BE, Kantor ED, Wilensky AJ. Lorazepam-valproate interaction: studies in normal subjects and isolated perfused rat liver. Epilepsia. 35(1):221–225. Accessed 7 Sept 2016.
38.
go back to reference Samara EE, Granneman RG, Witt GF, Cavanaugh JH. Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol. 1997;37(5):442–450. Accessed 7 Sept 2016. Samara EE, Granneman RG, Witt GF, Cavanaugh JH. Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol. 1997;37(5):442–450. Accessed 7 Sept 2016.
39.
go back to reference Calvo R, Suárez E, Rodríguez-Sasiaín JM, Aguilera L. Effect of sodium valproate on midazolam distribution. J Pharm Pharmacol. 1988;40(2):150–152. Accessed 15 Sept 2016. Calvo R, Suárez E, Rodríguez-Sasiaín JM, Aguilera L. Effect of sodium valproate on midazolam distribution. J Pharm Pharmacol. 1988;40(2):150–152. Accessed 15 Sept 2016.
40.
go back to reference Katz AM. Pharmacology and mechanisms of action of calcium-channel blockers. J Clin Hypertens. 1986;2(3 Suppl):28S–37S. Accessed 7 Sept 2016. Katz AM. Pharmacology and mechanisms of action of calcium-channel blockers. J Clin Hypertens. 1986;2(3 Suppl):28S–37S. Accessed 7 Sept 2016.
41.
go back to reference Scholz H. Pharmacological aspects of calcium channel blockers. Cardiovasc Drugs Ther. 1997;10 Suppl 3:869–872. Accessed 7 Sept 2016. Scholz H. Pharmacological aspects of calcium channel blockers. Cardiovasc Drugs Ther. 1997;10 Suppl 3:869–872. Accessed 7 Sept 2016.
42.
go back to reference Zhou S-F, Xue CC, Yu X-Q, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710.CrossRefPubMed Zhou S-F, Xue CC, Yu X-Q, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710.CrossRefPubMed
43.
go back to reference Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000;17(10):1189–1197. Accessed 7 Sept 2016. Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000;17(10):1189–1197. Accessed 7 Sept 2016.
44.
go back to reference Bahls FH, Ozuna J, Ritchie DE. Interactions between calcium channel blockers and the anticonvulsants carbamazepine and phenytoin. Neurology. 1991;41(5):740–742. Accessed 7 Sept 2016. Bahls FH, Ozuna J, Ritchie DE. Interactions between calcium channel blockers and the anticonvulsants carbamazepine and phenytoin. Neurology. 1991;41(5):740–742. Accessed 7 Sept 2016.
45.
go back to reference Clarke WR, Horn JR, Kawabori I, Gurtel S. Potentially serious drug interactions secondary to high-dose diltiazem used in the treatment of pulmonary hypertension. Pharmacotherapy. 13(4):402–405. Accessed 7 Sept 2016. Clarke WR, Horn JR, Kawabori I, Gurtel S. Potentially serious drug interactions secondary to high-dose diltiazem used in the treatment of pulmonary hypertension. Pharmacotherapy. 13(4):402–405. Accessed 7 Sept 2016.
46.
go back to reference Wijdicks EF, Torres VE, Schievink WI, Sterioff S. Cerebral hemorrhage in recipients of renal transplantation. Mayo Clin Proc. 1999;74(11):1111–2.CrossRefPubMed Wijdicks EF, Torres VE, Schievink WI, Sterioff S. Cerebral hemorrhage in recipients of renal transplantation. Mayo Clin Proc. 1999;74(11):1111–2.CrossRefPubMed
47.
go back to reference Wijdicks EF, de Groen PC, Wiesner RH, Krom RA. Intracerebral hemorrhage in liver transplant recipients. Mayo Clin Proc. 1995;70(5):443–6.CrossRefPubMed Wijdicks EF, de Groen PC, Wiesner RH, Krom RA. Intracerebral hemorrhage in liver transplant recipients. Mayo Clin Proc. 1995;70(5):443–6.CrossRefPubMed
48.
go back to reference Wang WL, Yang ZF, Lo CM, Liu CL, Fan ST. Intracerebral hemorrhage after liver transplantation. Liver Transpl. 2000;6(3):345–8.CrossRefPubMed Wang WL, Yang ZF, Lo CM, Liu CL, Fan ST. Intracerebral hemorrhage after liver transplantation. Liver Transpl. 2000;6(3):345–8.CrossRefPubMed
49.
go back to reference Liu-DeRyke X, Levy PD, Parker D, Coplin W, Rhoney DH. A prospective evaluation of labetalol versus nicardipine for blood pressure management in patients with acute stroke. Neurocrit Care. 2013;19(1):41–7.CrossRefPubMed Liu-DeRyke X, Levy PD, Parker D, Coplin W, Rhoney DH. A prospective evaluation of labetalol versus nicardipine for blood pressure management in patients with acute stroke. Neurocrit Care. 2013;19(1):41–7.CrossRefPubMed
50.
go back to reference Liu-Deryke X, Janisse J, Coplin WM, Parker D, Norris G, Rhoney DH. A comparison of nicardipine and labetalol for acute hypertension management following stroke. Neurocrit Care. 2008;9(2):167–76.CrossRefPubMed Liu-Deryke X, Janisse J, Coplin WM, Parker D, Norris G, Rhoney DH. A comparison of nicardipine and labetalol for acute hypertension management following stroke. Neurocrit Care. 2008;9(2):167–76.CrossRefPubMed
51.
go back to reference Iaria P, Blacher J, Asplanato M, Edric K, Safar M, Girerd X. [A new cause of resistant arterial hypertension: coprescription with anticonvulsant treatments]. Arch Mal Coeur Vaiss. 1999;92(8):1005–1008. Accessed 7 Sept 2016. Iaria P, Blacher J, Asplanato M, Edric K, Safar M, Girerd X. [A new cause of resistant arterial hypertension: coprescription with anticonvulsant treatments]. Arch Mal Coeur Vaiss. 1999;92(8):1005–1008. Accessed 7 Sept 2016.
52.
go back to reference Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–1052. Accessed 7 Sept 2016. Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–1052. Accessed 7 Sept 2016.
53.
go back to reference Wu C-C, Pai T-Y, Hsiao F-Y, Shen L-J, Lin Wu F-L. The effect of different carbapenem antibiotics (ertapenem, imipenem/cilastatin and meropenem) on serum valproic acid concentrations. Ther Drug Monit. 2016;38(5):587–92.CrossRefPubMed Wu C-C, Pai T-Y, Hsiao F-Y, Shen L-J, Lin Wu F-L. The effect of different carbapenem antibiotics (ertapenem, imipenem/cilastatin and meropenem) on serum valproic acid concentrations. Ther Drug Monit. 2016;38(5):587–92.CrossRefPubMed
54.
go back to reference Coves-Orts FJ, Borrás-Blasco J, Navarro-Ruiz A, Murcia-López A, Palacios-Ortega F. Acute seizures due to a probable interaction between valproic acid and meropenem. Ann Pharmacother. 2005;39(3):533–7.CrossRefPubMed Coves-Orts FJ, Borrás-Blasco J, Navarro-Ruiz A, Murcia-López A, Palacios-Ortega F. Acute seizures due to a probable interaction between valproic acid and meropenem. Ann Pharmacother. 2005;39(3):533–7.CrossRefPubMed
55.
go back to reference Lunde JL, Nelson RE, Storandt HF. Acute seizures in a patient receiving divalproex sodium after starting ertapenem therapy. Pharmacotherapy. 2007;27(8):1202–5.CrossRefPubMed Lunde JL, Nelson RE, Storandt HF. Acute seizures in a patient receiving divalproex sodium after starting ertapenem therapy. Pharmacotherapy. 2007;27(8):1202–5.CrossRefPubMed
56.
go back to reference Taha FA, Hammond DN, Sheth RD. Seizures from valproate–carbapenem interaction. Pediatr Neurol. 2013;49(4):279–81.CrossRefPubMed Taha FA, Hammond DN, Sheth RD. Seizures from valproate–carbapenem interaction. Pediatr Neurol. 2013;49(4):279–81.CrossRefPubMed
57.
go back to reference Kojima S, Nadai M, Kitaichi K, Wang L, Nabeshima T, Hasegawa T. Possible mechanism by which the carbapenem antibiotic panipenem decreases the concentration of valproic acid in plasma in rats. Antimicrob Agents Chemother. 1998;42(12):3136–3140. Accessed 7 Sept 2016. Kojima S, Nadai M, Kitaichi K, Wang L, Nabeshima T, Hasegawa T. Possible mechanism by which the carbapenem antibiotic panipenem decreases the concentration of valproic acid in plasma in rats. Antimicrob Agents Chemother. 1998;42(12):3136–3140. Accessed 7 Sept 2016.
58.
go back to reference Yokogawa K, Iwashita S, Kubota A, et al. Effect of meropenem on disposition kinetics of valproate and its metabolites in rabbits. Pharm Res. 2001;18(9):1320–1326. Accessed 7 Sept 2016. Yokogawa K, Iwashita S, Kubota A, et al. Effect of meropenem on disposition kinetics of valproate and its metabolites in rabbits. Pharm Res. 2001;18(9):1320–1326. Accessed 7 Sept 2016.
59.
go back to reference Yamamura N, Imura K, Naganuma H, Nishimura K. Panipenem, a carbapenem antibiotic, enhances the glucuronidation of intravenously administered valproic acid in rats. Drug Metab Dispos. 1999;27(6):724–730. Accessed 7 Sept 2016. Yamamura N, Imura K, Naganuma H, Nishimura K. Panipenem, a carbapenem antibiotic, enhances the glucuronidation of intravenously administered valproic acid in rats. Drug Metab Dispos. 1999;27(6):724–730. Accessed 7 Sept 2016.
60.
go back to reference Ament PW, Bertolino JG, Liszewski JL. Clinically significant drug interactions. Am Fam Physician. 2000;61(6):1745–1754. Accessed 7 Sept 2016. Ament PW, Bertolino JG, Liszewski JL. Clinically significant drug interactions. Am Fam Physician. 2000;61(6):1745–1754. Accessed 7 Sept 2016.
61.
go back to reference Patel AM, Shariff S, Bailey DG, et al. Statin toxicity from macrolide antibiotic coprescription: a population-based cohort study. Ann Intern Med. 2013;158(12):869–76.CrossRefPubMed Patel AM, Shariff S, Bailey DG, et al. Statin toxicity from macrolide antibiotic coprescription: a population-based cohort study. Ann Intern Med. 2013;158(12):869–76.CrossRefPubMed
63.
go back to reference Choi HA, Ko S-B, Presciutti M, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011;14(3):389–94.CrossRefPubMed Choi HA, Ko S-B, Presciutti M, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011;14(3):389–94.CrossRefPubMed
64.
go back to reference Morrison EK, Rowe AS. Probable drug-drug interaction leading to serotonin syndrome in a patient treated with concomitant buspirone and linezolid in the setting of therapeutic hypothermia. J Clin Pharm Ther. 2012;37(5):610–3.CrossRefPubMed Morrison EK, Rowe AS. Probable drug-drug interaction leading to serotonin syndrome in a patient treated with concomitant buspirone and linezolid in the setting of therapeutic hypothermia. J Clin Pharm Ther. 2012;37(5):610–3.CrossRefPubMed
65.
go back to reference Ziesenitz VC, König SK, Mahlke NS, Skopp G, Haefeli WE, Mikus G. Pharmacokinetic interaction of intravenous fentanyl with ketoconazole. J Clin Pharmacol. 2015;55(6):708–17.CrossRefPubMed Ziesenitz VC, König SK, Mahlke NS, Skopp G, Haefeli WE, Mikus G. Pharmacokinetic interaction of intravenous fentanyl with ketoconazole. J Clin Pharmacol. 2015;55(6):708–17.CrossRefPubMed
66.
go back to reference Hillman AD, Witenko CJ, Sultan SM, Gala G. Serotonin syndrome caused by fentanyl and methadone in a burn injury. Pharmacotherapy. 2015;35(1):112–7.CrossRefPubMed Hillman AD, Witenko CJ, Sultan SM, Gala G. Serotonin syndrome caused by fentanyl and methadone in a burn injury. Pharmacotherapy. 2015;35(1):112–7.CrossRefPubMed
67.
go back to reference Katus LE, Frucht SJ. Management of serotonin syndrome and neuroleptic malignant syndrome. Curr Treat Options Neurol. 2016;18(9):39.CrossRefPubMed Katus LE, Frucht SJ. Management of serotonin syndrome and neuroleptic malignant syndrome. Curr Treat Options Neurol. 2016;18(9):39.CrossRefPubMed
68.
go back to reference Mowry JB, Spyker DA, Cantilena LR, Bailey JE, Ford M. 2012 annual report of the american association of poison control centers’ national poison data system (NPDS): 30th annual report. Clin Toxicol (Phila). 2013;51(10):949–1229.CrossRef Mowry JB, Spyker DA, Cantilena LR, Bailey JE, Ford M. 2012 annual report of the american association of poison control centers’ national poison data system (NPDS): 30th annual report. Clin Toxicol (Phila). 2013;51(10):949–1229.CrossRef
69.
go back to reference Ailawadhi S, Sung K-W, Carlson LA, Baer MR. Serotonin syndrome caused by interaction between citalopram and fentanyl. J Clin Pharm Ther. 2007;32(2):199–202.CrossRefPubMed Ailawadhi S, Sung K-W, Carlson LA, Baer MR. Serotonin syndrome caused by interaction between citalopram and fentanyl. J Clin Pharm Ther. 2007;32(2):199–202.CrossRefPubMed
70.
go back to reference Goodwin HE, Gill RS, Murakami PN, Thompson CB, Lewin JJ, Mirski MA. Dexmedetomidine preserves attention/calculation when used for cooperative and short-term intensive care unit sedation. J Crit Care. 2013;28(6):1113.e7–1113.e10. Goodwin HE, Gill RS, Murakami PN, Thompson CB, Lewin JJ, Mirski MA. Dexmedetomidine preserves attention/calculation when used for cooperative and short-term intensive care unit sedation. J Crit Care. 2013;28(6):1113.e7–1113.e10.
71.
go back to reference Stiehl SR, Squires JE, Bucuvalas JC, Hemmelgarn TS. Tacrolimus interaction with dexmedetomidine—a case report. Pediatr Transplant. 2016;20(1):155–7.CrossRefPubMed Stiehl SR, Squires JE, Bucuvalas JC, Hemmelgarn TS. Tacrolimus interaction with dexmedetomidine—a case report. Pediatr Transplant. 2016;20(1):155–7.CrossRefPubMed
72.
go back to reference Mead GE, Hsieh C-F, Lee R, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. In: Mead GE, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2012. Mead GE, Hsieh C-F, Lee R, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. In: Mead GE, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2012.
73.
go back to reference DeVane CL. Pharmacogenetics and drug metabolism of newer antidepressant agents. J Clin Psychiatry. 1994;55 Suppl 38:45–7. Accessed 7 Sept 2016. DeVane CL. Pharmacogenetics and drug metabolism of newer antidepressant agents. J Clin Psychiatry. 1994;55 Suppl 38:45–7. Accessed 7 Sept 2016.
74.
go back to reference Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet. 1997;32 Suppl 1:1–21. Accessed 7 Sept 2016. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet. 1997;32 Suppl 1:1–21. Accessed 7 Sept 2016.
75.
go back to reference Chollet F, Tardy J, Albucher J-F, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30.CrossRefPubMed Chollet F, Tardy J, Albucher J-F, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30.CrossRefPubMed
76.
go back to reference Wang Z-Y, Chen M, Zhu L-L, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag. 2015;11:449–67.PubMedPubMedCentral Wang Z-Y, Chen M, Zhu L-L, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag. 2015;11:449–67.PubMedPubMedCentral
77.
go back to reference de Abajo FJ. Effects of selective serotonin reuptake inhibitors on platelet function. Drugs Aging. 2011;28(5):345–67.CrossRefPubMed de Abajo FJ. Effects of selective serotonin reuptake inhibitors on platelet function. Drugs Aging. 2011;28(5):345–67.CrossRefPubMed
78.
go back to reference Cochran KA, Cavallari LH, Shapiro NL, Bishop JR. Bleeding incidence with concomitant use of antidepressants and warfarin. Ther Drug Monit. 2011;33(4):433.CrossRefPubMedPubMedCentral Cochran KA, Cavallari LH, Shapiro NL, Bishop JR. Bleeding incidence with concomitant use of antidepressants and warfarin. Ther Drug Monit. 2011;33(4):433.CrossRefPubMedPubMedCentral
79.
go back to reference Labos C, Dasgupta K, Nedjar H, Turecki G, Rahme E. Risk of bleeding associated with combined use of selective serotonin reuptake inhibitors and antiplatelet therapy following acute myocardial infarction. Can Med Assoc J. 2011;183(16):1835.CrossRef Labos C, Dasgupta K, Nedjar H, Turecki G, Rahme E. Risk of bleeding associated with combined use of selective serotonin reuptake inhibitors and antiplatelet therapy following acute myocardial infarction. Can Med Assoc J. 2011;183(16):1835.CrossRef
80.
go back to reference Nelson MH, Birnbaum AK, Remmel RP. Inhibition of phenytoin hydroxylation in human liver microsomes by several selective serotonin re-uptake inhibitors. Epilepsy Res. 2001;44(1):71–82. Accessed 7 Sept 2016. Nelson MH, Birnbaum AK, Remmel RP. Inhibition of phenytoin hydroxylation in human liver microsomes by several selective serotonin re-uptake inhibitors. Epilepsy Res. 2001;44(1):71–82. Accessed 7 Sept 2016.
81.
go back to reference Flockhart DA. Drug interactions: cytochrome p450 drug interaction table. Indiana University School of Medicine. 2007. “/clinpharm/ddis/clinical-table/” Accessed 25 Nov 2016. Flockhart DA. Drug interactions: cytochrome p450 drug interaction table. Indiana University School of Medicine. 2007. “/clinpharm/ddis/clinical-table/” Accessed 25 Nov 2016.
Metadata
Title
Drug Interactions in Neurocritical Care
Authors
Brian Spoelhof
Salia Farrokh
Lucia Rivera-Lara
Publication date
01-10-2017
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2017
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-016-0369-0

Other articles of this Issue 2/2017

Neurocritical Care 2/2017 Go to the issue