Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

DPM as a radiation transport engine for PRIMO

Authors: Miguel Rodriguez, Josep Sempau, Christian Bäumer, Beate Timmermann, Lorenzo Brualla

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

PRIMO is a dose verification system based on the general-purpose Monte Carlo radiation transport code penelope, which implements an accurate physics model of the interaction cross sections and the radiation transport process but with low computational efficiency as compared with fast Monte Carlo codes. One of these fast Monte Carlo codes is the Dose Planning Method (DPM). The purpose of this work is to describe the adaptation of DPM as an alternative PRIMO computation engine, to validate its performance against penelope and to validate it for some specific cases.

Methods

DPM was parallelized and modified to perform radiation transport in quadric geometries, which are used to describe linacs, thus allowing the simulation of dynamic treatments. To benchmark the new code versus penelope, both in terms of accuracy of results and simulation time, several tests were performed, namely, irradiation of a multi-layer phantom, irradiation of a water phantom using a collimating pattern defined by the multileaf collimator (MLC), and four clinical cases. The gamma index, with passing criteria of 1 mm/1%, was used to compare the absorbed dose distributions. Clinical cases were compared using a 3-D gamma analysis.

Results

The percentage of voxels passing the gamma criteria always exceeded 99% for the phantom cases, with the exception of the transport through air, for which dose differences between DPM and penelope were as large as 24%. The corresponding percentage for the clinical cases was larger than 99%. The speedup factor between DPM and penelope ranged from 2.5 ×, for the simulation of the radiation transport through a MLC and the subsequent dose estimation in a water phantom, up to 11.8 × for a lung treatment. A further increase of the computational speed, up to 25 ×, can be obtained in the clinical cases when a voxel size of (2.5 mm)3 is used.

Conclusions

DPM has been incorporated as an efficient and accurate Monte Carlo engine for dose estimation in PRIMO. It allows the concatenated simulation of the patient-dependent part of the linac and the patient geometry in static and dynamic treatments. The discrepancy observed between DPM and penelope, which is due to an artifact of the cross section interpolation algorithm for low energy electrons in air, does not affect the results in other materials.
Literature
1.
go back to reference Rodriguez M, Sempau J, Brualla L. PRIMO : A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol. 2013; 189:881–6.CrossRef Rodriguez M, Sempau J, Brualla L. PRIMO : A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol. 2013; 189:881–6.CrossRef
2.
go back to reference Sempau J, Badal A, Brualla L. A penelope-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys. 2011; 38:5887–95.CrossRef Sempau J, Badal A, Brualla L. A penelope-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys. 2011; 38:5887–95.CrossRef
3.
go back to reference Salvat F, Fernández-Varea JM, Sempau J. Penelope 2011—A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy de Molineaux, France: OECD Nuclear Energy Agency; 2011. Salvat F, Fernández-Varea JM, Sempau J. Penelope 2011—A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy de Molineaux, France: OECD Nuclear Energy Agency; 2011.
4.
go back to reference Brualla L, Rodriguez M, Lallena AM. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol. 2017; 193:243–59.CrossRef Brualla L, Rodriguez M, Lallena AM. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol. 2017; 193:243–59.CrossRef
5.
go back to reference Sempau J, Wilderman S, Bielajew A. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000; 45:2263–91.CrossRef Sempau J, Wilderman S, Bielajew A. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000; 45:2263–91.CrossRef
6.
go back to reference Sechopoulos I, Rogers DWO, Bazalova-Carter M, Bolch WE, Heath E, McNitt-Gray MF, Sempau J, Williamson JF. RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the AAPM Research Committee Task Group 268. Med Phys. 2018; 45:e5–e1.CrossRef Sechopoulos I, Rogers DWO, Bazalova-Carter M, Bolch WE, Heath E, McNitt-Gray MF, Sempau J, Williamson JF. RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the AAPM Research Committee Task Group 268. Med Phys. 2018; 45:e5–e1.CrossRef
7.
go back to reference Heitler W. The Quantum Theory of Radiation. London: Oxford Univ. Press; 1954. Heitler W. The Quantum Theory of Radiation. London: Oxford Univ. Press; 1954.
8.
go back to reference Møller C. Zur Theorie des Durchgangs schneller Elektronen durch Materie. Ann Physik. 1932; 14:531–85.CrossRef Møller C. Zur Theorie des Durchgangs schneller Elektronen durch Materie. Ann Physik. 1932; 14:531–85.CrossRef
9.
go back to reference Woodcock ER, Murphy T, Hemmings PJ, Longworth SC. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In: Proceedings of the Conference on Applications of Computing Methods to Reactor Problems.1965. p. 557. Woodcock ER, Murphy T, Hemmings PJ, Longworth SC. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In: Proceedings of the Conference on Applications of Computing Methods to Reactor Problems.1965. p. 557.
10.
go back to reference Berger MJ. Monte Carlo calculation of the penetration and diffusion of fast charged particles In: Alder B, Fernbach S, Rotenberg M, editors. Methods in Computational Physics. New York: Academic Press: 1963. p. 135–215. Berger MJ. Monte Carlo calculation of the penetration and diffusion of fast charged particles In: Alder B, Fernbach S, Rotenberg M, editors. Methods in Computational Physics. New York: Academic Press: 1963. p. 135–215.
11.
go back to reference Kawrakow I, Bielajew A. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations. Nucl Instrum Meth B. 1998; 134:325–36.CrossRef Kawrakow I, Bielajew A. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations. Nucl Instrum Meth B. 1998; 134:325–36.CrossRef
12.
go back to reference Lewis HW. Multiple scattering in an infinite medium. Phys Rev. 1950; 78:526–9.CrossRef Lewis HW. Multiple scattering in an infinite medium. Phys Rev. 1950; 78:526–9.CrossRef
13.
go back to reference Chetty IJ, Moran JM, Neelam T, McShan DL, Fraass BA, Wilderman S, Bielajew A. Benchmarking of the dose planning method (DPM) Monte Carlo code using electron beams from a racetrack microtron. Med Phys. 2002; 29:1035–41.CrossRef Chetty IJ, Moran JM, Neelam T, McShan DL, Fraass BA, Wilderman S, Bielajew A. Benchmarking of the dose planning method (DPM) Monte Carlo code using electron beams from a racetrack microtron. Med Phys. 2002; 29:1035–41.CrossRef
14.
go back to reference Chetty IJ, Charland PM, Neelam T, McShan DL, Fraass BA. Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media. Med Phys. 2003; 30:563–73.CrossRef Chetty IJ, Charland PM, Neelam T, McShan DL, Fraass BA. Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media. Med Phys. 2003; 30:563–73.CrossRef
15.
go back to reference Chetty IJ, Bruce C, Joanna E, Cygler J, DeMarco J, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Charlie Ma C-M, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007; 34:4818–53.CrossRef Chetty IJ, Bruce C, Joanna E, Cygler J, DeMarco J, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Charlie Ma C-M, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007; 34:4818–53.CrossRef
16.
go back to reference Jiménez J, Lardiés D, Ortega P, Canellas M, Sempau J. Cálculo de distribuciones de dosis de haces de electrones mediante técnicas de Monte Carlo. Implementación en un planificador comercial. In: Proceedings of the XVI Congreso Nacional de la Sociedad Española de Física Médica.2007. Jiménez J, Lardiés D, Ortega P, Canellas M, Sempau J. Cálculo de distribuciones de dosis de haces de electrones mediante técnicas de Monte Carlo. Implementación en un planificador comercial. In: Proceedings of the XVI Congreso Nacional de la Sociedad Española de Física Médica.2007.
17.
go back to reference Tyagi N, Bose A, Chetty IJ. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications,. Med Phys. 2004; 31(9):2721–5.CrossRef Tyagi N, Bose A, Chetty IJ. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications,. Med Phys. 2004; 31(9):2721–5.CrossRef
18.
go back to reference Weng X, Yan Y, Shu H, Jiang JSB, Luo L. A vectorized Monte Carlo code for radiotherapy treatment planning dose calculation. Phys Med Biol. 2003; 48:111–20.CrossRef Weng X, Yan Y, Shu H, Jiang JSB, Luo L. A vectorized Monte Carlo code for radiotherapy treatment planning dose calculation. Phys Med Biol. 2003; 48:111–20.CrossRef
19.
go back to reference Jia X, Gu X, Sempau J, Choi D, Majumdar A, Jiang SB. Development of a GPU-based Monte Carlo dose calculation code for coupled electron–photon transport. Phys Med Biol. 2010; 55:3077–86.CrossRef Jia X, Gu X, Sempau J, Choi D, Majumdar A, Jiang SB. Development of a GPU-based Monte Carlo dose calculation code for coupled electron–photon transport. Phys Med Biol. 2010; 55:3077–86.CrossRef
20.
go back to reference Rodriguez M, Brualla L. Many-integrated core (MIC) technology for accelerating Monte Carlo simulation of radiation transport: A study based on the code DPM. Comp Phys Comm. 2018; 225:28–35.CrossRef Rodriguez M, Brualla L. Many-integrated core (MIC) technology for accelerating Monte Carlo simulation of radiation transport: A study based on the code DPM. Comp Phys Comm. 2018; 225:28–35.CrossRef
21.
go back to reference Sempau J, Wilderman S, Bielajew A. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000; 45:2263–91.CrossRef Sempau J, Wilderman S, Bielajew A. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000; 45:2263–91.CrossRef
22.
go back to reference In: Jenkins TM, Nelson WR, Rindi A, (eds).Monte Carlo Transport of Electrons and Photons. New York: Plenum Press; 1988. In: Jenkins TM, Nelson WR, Rindi A, (eds).Monte Carlo Transport of Electrons and Photons. New York: Plenum Press; 1988.
23.
go back to reference Brualla L, Salvat F, Palanco-Zamora R. Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol. 2009; 54:4131–49.CrossRef Brualla L, Salvat F, Palanco-Zamora R. Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol. 2009; 54:4131–49.CrossRef
24.
go back to reference Kawrakow I, Fippel M. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol. 2000; 45:2163–84.CrossRef Kawrakow I, Fippel M. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol. 2000; 45:2163–84.CrossRef
25.
go back to reference Heath E, Seuntjens J. Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator,. Phys Med Biol. 2003; 48(24):4045–63.CrossRef Heath E, Seuntjens J. Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator,. Phys Med Biol. 2003; 48(24):4045–63.CrossRef
26.
go back to reference McConn Jr R, Gesh C, Pagh R, Rucker R, Williams III R. Compendium of Material Composition Data for Radiation Transport Modeling. USA: Pacific Northwest National Laboratory, PIET-43741-TM-963 PNNL-15870 Rev. 1; 2011.CrossRef McConn Jr R, Gesh C, Pagh R, Rucker R, Williams III R. Compendium of Material Composition Data for Radiation Transport Modeling. USA: Pacific Northwest National Laboratory, PIET-43741-TM-963 PNNL-15870 Rev. 1; 2011.CrossRef
Metadata
Title
DPM as a radiation transport engine for PRIMO
Authors
Miguel Rodriguez
Josep Sempau
Christian Bäumer
Beate Timmermann
Lorenzo Brualla
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1188-6

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue