Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Research

Downregulation of E-Cadherin enhances proliferation of head and neck cancer through transcriptional regulation of EGFR

Authors: Dongsheng Wang, Ling Su, Donghai Huang, Hongzheng Zhang, Dong M Shin, Zhuo G Chen

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

Background

Epidermal growth factor receptor (EGFR) has been reported to downregulate E-cadherin (E-cad); however, whether the downregulation of E-cad has any effect on EGFR expression has not been elucidated. Our previous studies have found an inverse correlation between EGFR and E-cad expression in tissue specimens of squamous cell carcinoma of the head and neck (SCCHN). To understand the biological mechanisms underlying this clinical observation, we knocked down E-cad expression utilizing E-cad siRNA in four SCCHN cell lines.

Results

It was observed that downregulation of E-cad upregulated EGFR expression compared with control siRNA-transfected cells after 72 hours. Cellular membrane localization of EGFR was also increased. Consequently, downstream signaling molecules of the EGFR signaling pathway, p-AKT, and p-ERK, were increased at 72 hours after the transfection with E-cad siRNA. Reverse transcriptase-polymerase chain reaction (RT-PCR) showed EGFR mRNA was upregulated by E-cad siRNA as early as 24 hours. In addition, RT-PCR revealed this upregulation was due to the increase of EGFR mRNA stability, but not protein stability. Sulforhodamine B (SRB) assay indicated growth of E-cad knocked down cells was enhanced up to 2-fold more than that of control siRNA-transfected cells at 72-hours post-transfection. The effect of E-cad reduction on cell proliferation was blocked by treating the E-cad siRNA-transfected cells with 1 μM of the EGFR-specific tyrosine kinase inhibitor erlotinib.

Conclusion

Our results suggest for the first time that reduction of E-cad results in upregulation of EGFR transcriptionally. It also suggests that loss of E-cad may induce proliferation of SCCHN by activating EGFR and its downstream signaling pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Murray T, Wardet E, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics. CA Cancer J Clin. 2005, 55 (1): 10-30. 10.3322/canjclin.55.1.10CrossRefPubMed Jemal A, Murray T, Wardet E, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics. CA Cancer J Clin. 2005, 55 (1): 10-30. 10.3322/canjclin.55.1.10CrossRefPubMed
2.
go back to reference Parkin D, Pisani P, Ferlay J: Global cancer statistics. Cancer J Clin. 1999, 49 (1): 33-64. 10.3322/canjclin.49.1.33. 10.3322/canjclin.49.1.33CrossRef Parkin D, Pisani P, Ferlay J: Global cancer statistics. Cancer J Clin. 1999, 49 (1): 33-64. 10.3322/canjclin.49.1.33. 10.3322/canjclin.49.1.33CrossRef
3.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer Statistics. CA Cancer J Clin. 2009, 59 (4): 225-249. 10.3322/caac.20006CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer Statistics. CA Cancer J Clin. 2009, 59 (4): 225-249. 10.3322/caac.20006CrossRefPubMed
4.
go back to reference Neal D, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL: The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer. 1990, 65 (7): 1619-1625. 10.1002/1097-0142(19900401)65:7<1619::AID-CNCR2820650728>3.0.CO;2-QCrossRefPubMed Neal D, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL: The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer. 1990, 65 (7): 1619-1625. 10.1002/1097-0142(19900401)65:7<1619::AID-CNCR2820650728>3.0.CO;2-QCrossRefPubMed
5.
go back to reference Ennis B, Lippman ME, Dickson RB: The EGF receptor system as a target for antitumor therapy. Cancer Invest. 1991, 9 (5): 553-562. 10.3109/07357909109018953CrossRefPubMed Ennis B, Lippman ME, Dickson RB: The EGF receptor system as a target for antitumor therapy. Cancer Invest. 1991, 9 (5): 553-562. 10.3109/07357909109018953CrossRefPubMed
6.
go back to reference Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M: Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 1993, 13 (3): 565-569.PubMed Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M: Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 1993, 13 (3): 565-569.PubMed
7.
go back to reference Grandis JR, Tweardy DJ: Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Research. 1993, 53 (13): 3579-3584.PubMed Grandis JR, Tweardy DJ: Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Research. 1993, 53 (13): 3579-3584.PubMed
8.
go back to reference Cohen G, Mustafi R, Chumsangsri A, Little N, Nathanson J, Cerda S, Jagadeeswaran S, Dougherty U, Joseph L, Hart J, Yerian L, Tretiakova M, Yuan W, Obara P, Khare S, Sinicrope FA, Fichera A, Boss GR, Carroll R, Bissonnette M: Epidermal growth factor receptor signaling is up-regulated in human colonic aberrant crypt foci. Cancer Research. 2006, 66 (11): 5656-5664. 10.1158/0008-5472.CAN-05-0308CrossRefPubMed Cohen G, Mustafi R, Chumsangsri A, Little N, Nathanson J, Cerda S, Jagadeeswaran S, Dougherty U, Joseph L, Hart J, Yerian L, Tretiakova M, Yuan W, Obara P, Khare S, Sinicrope FA, Fichera A, Boss GR, Carroll R, Bissonnette M: Epidermal growth factor receptor signaling is up-regulated in human colonic aberrant crypt foci. Cancer Research. 2006, 66 (11): 5656-5664. 10.1158/0008-5472.CAN-05-0308CrossRefPubMed
9.
go back to reference Grandis J, Melhem MF, Goodinget WE, Day R, Holst VA: Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998, 90 (14): 824-832.CrossRef Grandis J, Melhem MF, Goodinget WE, Day R, Holst VA: Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998, 90 (14): 824-832.CrossRef
10.
go back to reference Maurizi M, Almadori G, Ferrandina G, Distefano M, Romanini ME, Cadoni G, Benedetti-Panici P, Paludetti G, Scambia G, Mancuso S: Prognostic significance of epidermal growth factor receptor in laryngeal squamous cell carcinoma. Br J Cancer. 1996, 74 (8): 1253-1259. 10.1038/bjc.1996.525PubMedCentralCrossRefPubMed Maurizi M, Almadori G, Ferrandina G, Distefano M, Romanini ME, Cadoni G, Benedetti-Panici P, Paludetti G, Scambia G, Mancuso S: Prognostic significance of epidermal growth factor receptor in laryngeal squamous cell carcinoma. Br J Cancer. 1996, 74 (8): 1253-1259. 10.1038/bjc.1996.525PubMedCentralCrossRefPubMed
11.
go back to reference Chen Z, Zhang X, Li M, Wang Z, Wieand HS, Grandis JR, Shin DM: Simultaneously targeting epidermal growth factor receptor tyrosine kinase and cyclooxygenase-2, an efficient approach to inhibition of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004, 10 (17): 5930-5940. 10.1158/1078-0432.CCR-03-0677CrossRefPubMed Chen Z, Zhang X, Li M, Wang Z, Wieand HS, Grandis JR, Shin DM: Simultaneously targeting epidermal growth factor receptor tyrosine kinase and cyclooxygenase-2, an efficient approach to inhibition of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004, 10 (17): 5930-5940. 10.1158/1078-0432.CCR-03-0677CrossRefPubMed
12.
go back to reference Kalyankrishna S, Grandis JR: Epidermal growth factor receptor biology in head and neck cancer. J Clin Onco. 2006, 24 (17): 2666-2672. 10.1200/JCO.2005.04.8306. 10.1200/JCO.2005.04.8306CrossRef Kalyankrishna S, Grandis JR: Epidermal growth factor receptor biology in head and neck cancer. J Clin Onco. 2006, 24 (17): 2666-2672. 10.1200/JCO.2005.04.8306. 10.1200/JCO.2005.04.8306CrossRef
13.
go back to reference Ang K, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH, Fu KK, Milas L: Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Research. 2002, 62 (24): 7350-7356.PubMed Ang K, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH, Fu KK, Milas L: Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Research. 2002, 62 (24): 7350-7356.PubMed
14.
go back to reference Astsaturov I, Cohen RB, Harari P: Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev Anticancer Ther. 2006, 6 (9): 1179-1184. 10.1586/14737140.6.9.1179CrossRefPubMed Astsaturov I, Cohen RB, Harari P: Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev Anticancer Ther. 2006, 6 (9): 1179-1184. 10.1586/14737140.6.9.1179CrossRefPubMed
15.
go back to reference Guarino M, Rubino B, Ballabio G: The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007, 39 (3): 305-318. 10.1080/00313020701329914CrossRefPubMed Guarino M, Rubino B, Ballabio G: The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007, 39 (3): 305-318. 10.1080/00313020701329914CrossRefPubMed
16.
go back to reference Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research. 2007, 67 (19): 9066-9076. 10.1158/0008-5472.CAN-07-0575PubMedCentralCrossRefPubMed Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research. 2007, 67 (19): 9066-9076. 10.1158/0008-5472.CAN-07-0575PubMedCentralCrossRefPubMed
17.
go back to reference Lugo-Martínez VH, Petit CS, Fouquet S, Le Beyec J, Chambaz J, Pinçon-Raymond M, Cardot P, Thenet S: Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol. 2009, 296 (2): 235-244.CrossRef Lugo-Martínez VH, Petit CS, Fouquet S, Le Beyec J, Chambaz J, Pinçon-Raymond M, Cardot P, Thenet S: Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol. 2009, 296 (2): 235-244.CrossRef
18.
go back to reference Muller S, Tighiouart M, Saba N, Zhang H, Shin DM, Chen Z(G): Distinctive E-cadherin and epidermal growth factor receptor expression in metastatic and non-metastatic head and neck squamous cell carcinoma: Predictive and prognostic correlation. Cancer. 2008, 113 (1): 97-107. 10.1002/cncr.23557CrossRefPubMed Muller S, Tighiouart M, Saba N, Zhang H, Shin DM, Chen Z(G): Distinctive E-cadherin and epidermal growth factor receptor expression in metastatic and non-metastatic head and neck squamous cell carcinoma: Predictive and prognostic correlation. Cancer. 2008, 113 (1): 97-107. 10.1002/cncr.23557CrossRefPubMed
19.
go back to reference Huang D, Su L, Peng XH, Zhang H, Khuri FR, Shin DM, Chen ZG: Quantum dot-based quantification revealed differences in subcellular localization of EGFR and E-cadherin between EGFR-TKI sensitive and insensitive cancer cells. Nanotechnology. 2009, 20 (22): Epub Huang D, Su L, Peng XH, Zhang H, Khuri FR, Shin DM, Chen ZG: Quantum dot-based quantification revealed differences in subcellular localization of EGFR and E-cadherin between EGFR-TKI sensitive and insensitive cancer cells. Nanotechnology. 2009, 20 (22): Epub
20.
go back to reference Sacks P, Parnes S, Gallick G, Mansouri Z, Lichtner R, Lichtner R, Satya-Prakash KL, Pathak S, Parsons DF: Establishment and Characterization of Two New Squamous Cell Carcinoma Cell Lines Derived from Tumors of the Head and Neck. Cancer. 1988, 48 (10): 2858-2866. Sacks P, Parnes S, Gallick G, Mansouri Z, Lichtner R, Lichtner R, Satya-Prakash KL, Pathak S, Parsons DF: Establishment and Characterization of Two New Squamous Cell Carcinoma Cell Lines Derived from Tumors of the Head and Neck. Cancer. 1988, 48 (10): 2858-2866.
21.
go back to reference Beckhardt RN, Kiyokawa N, Xi L, Liu TJ, Hung MC, el-Naggar AK, Zhang HZ, Clayman GL: HER-2/neu oncogene characterization in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1995, 121 (11): 1265-70.CrossRefPubMed Beckhardt RN, Kiyokawa N, Xi L, Liu TJ, Hung MC, el-Naggar AK, Zhang HZ, Clayman GL: HER-2/neu oncogene characterization in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1995, 121 (11): 1265-70.CrossRefPubMed
22.
go back to reference Heo DS, Snyderman C, Gollin SM, Pan S, Walker E, Deka R, Barnes EL, Johnson JT, Herberman RB, Whiteside TL: Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res. 1989, 49 (18): 5167-5175.PubMed Heo DS, Snyderman C, Gollin SM, Pan S, Walker E, Deka R, Barnes EL, Johnson JT, Herberman RB, Whiteside TL: Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res. 1989, 49 (18): 5167-5175.PubMed
23.
go back to reference Cowden Dahl KDSJ, Ning Y, Gutierrez E, Fishman DA, Adley BP, Stack MS, Hudson LG: Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Research. 2008, 68 (12): 4606-4613. 10.1158/0008-5472.CAN-07-5046PubMedCentralCrossRefPubMed Cowden Dahl KDSJ, Ning Y, Gutierrez E, Fishman DA, Adley BP, Stack MS, Hudson LG: Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Research. 2008, 68 (12): 4606-4613. 10.1158/0008-5472.CAN-07-5046PubMedCentralCrossRefPubMed
24.
go back to reference Roberts P, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26 (22): 3291-3310. 10.1038/sj.onc.1210422CrossRefPubMed Roberts P, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26 (22): 3291-3310. 10.1038/sj.onc.1210422CrossRefPubMed
25.
go back to reference Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR: E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 2004, 23 (8): 1739-1748. 10.1038/sj.emboj.7600136PubMedCentralCrossRefPubMed Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR: E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 2004, 23 (8): 1739-1748. 10.1038/sj.emboj.7600136PubMedCentralCrossRefPubMed
26.
go back to reference Perrais M, Chen X, Perez-Moreno M, Gumbiner BM: E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell. 2007, 18 (6): 2013-2025. 10.1091/mbc.E06-04-0348PubMedCentralCrossRefPubMed Perrais M, Chen X, Perez-Moreno M, Gumbiner BM: E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell. 2007, 18 (6): 2013-2025. 10.1091/mbc.E06-04-0348PubMedCentralCrossRefPubMed
27.
go back to reference Zhou B, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004, 6 (10): 931-940. 10.1038/ncb1173CrossRefPubMed Zhou B, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004, 6 (10): 931-940. 10.1038/ncb1173CrossRefPubMed
28.
go back to reference Saito T, Oda Y, Kawaguchi K, Sugimachi K, Yamamoto H, Tateishi N, Tanaka K, Matsuda S, Iwamoto Y, Ladanyi M, Tsuneyoshi M: E-cadherin mutation and Snail overexpression as alternative mechanisms of E-cadherin inactivation in synovial sarcoma. Oncogene. 2004, 23 (53): 8629-8638. 10.1038/sj.onc.1207960CrossRefPubMed Saito T, Oda Y, Kawaguchi K, Sugimachi K, Yamamoto H, Tateishi N, Tanaka K, Matsuda S, Iwamoto Y, Ladanyi M, Tsuneyoshi M: E-cadherin mutation and Snail overexpression as alternative mechanisms of E-cadherin inactivation in synovial sarcoma. Oncogene. 2004, 23 (53): 8629-8638. 10.1038/sj.onc.1207960CrossRefPubMed
29.
go back to reference Hipp S, Walch A, Schuster T, Losko S, Laux H, Bolton T, Höfler H, Becker KF: Activation of epidermal growth factor receptor results in Snail protein but not mRNA over-expression in endometrial cancer. J Cell Mol Med. 2008, 13 (9b): 3858-3867.PubMedCentralCrossRefPubMed Hipp S, Walch A, Schuster T, Losko S, Laux H, Bolton T, Höfler H, Becker KF: Activation of epidermal growth factor receptor results in Snail protein but not mRNA over-expression in endometrial cancer. J Cell Mol Med. 2008, 13 (9b): 3858-3867.PubMedCentralCrossRefPubMed
Metadata
Title
Downregulation of E-Cadherin enhances proliferation of head and neck cancer through transcriptional regulation of EGFR
Authors
Dongsheng Wang
Ling Su
Donghai Huang
Hongzheng Zhang
Dong M Shin
Zhuo G Chen
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-116

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine