Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2010

01-07-2010 | Original Article

Dosimetry for 131I-MIBG therapies in metastatic neuroblastoma, phaeochromocytoma and paraganglioma

Authors: Ferdinand Sudbrock, Matthias Schmidt, Thorsten Simon, Wolfgang Eschner, Frank Berthold, Harald Schicha

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2010

Login to get access

Abstract

Purpose

Radiation dosimetry is a basic requirement for targeted radionuclide therapies (TRT) which have become of increasing interest in nuclear medicine. Despite the significant role of the radiopharmaceutical 131I-metaiodobenzylguanidine (MIBG) for the treatment of metastatic neuroblastoma, phaeochromocytoma and paraganglioma details for a reliable dosimetry are still sparse. This work presents our procedures, the dosimetric data and experiences with TRT using 131I-MIBG.

Methods

A total of 21 patients were treated with 131I-MIBG between 2004 and 2008 according to a clearly defined protocol. Whole-body absorbed doses were determined by a series of scintillation probe readings for all 21 cases. Tumour absorbed doses were calculated on the basis of quantitative imaging for an entity of 25 lesions investigated individually using the region of interest (ROI) technique based on five scans each.

Results

Typical whole-body absorbed doses are found in the region of 2 Gy (range: 1.0–2.9 Gy) whereas tumour absorbed doses in turn cover a span between 10 and 60 Gy. Nonetheless this variation of tumour absorbed doses is comparatively low.

Conclusion

The trial protocol in use is a substantial advancement in terms of reliable dosimetry. A clearly defined modus operandi for MIBG therapies should involve precisely described dosimetric procedures, e.g. a minimum of 20 whole-body measurements using a calibrated counter and at least four gamma camera scans over the whole period of the inpatient stay should be carried out. Calculation of tumour volumes is accomplished best via evaluation of SPECT and CT images.
Appendix
Available only for authorised users
Footnotes
1
The highest value of 0.47 Gy/GBq is omitted here. The severe illness of this young boy did not allow more than five whole-body measurements and, what is more, the patient to detector distance could only roughly be kept constant. Quantitative imaging was impracticable.
 
Literature
1.
go back to reference Berger MJ. Distribution of absorbed doses around point sources of electrons and beta particles in water and other media. J Nucl Med 1971;Suppl 5:5–23. Berger MJ. Distribution of absorbed doses around point sources of electrons and beta particles in water and other media. J Nucl Med 1971;Suppl 5:5–23.
3.
go back to reference Berthold F. NB2004 Trial Protocol (confidential), Gesellschaft für pädiatrische Onkologie und Hämatologie (Society of Pediatric Oncology and Hematology). Berthold F. NB2004 Trial Protocol (confidential), Gesellschaft für pädiatrische Onkologie und Hämatologie (Society of Pediatric Oncology and Hematology).
4.
go back to reference Bolster A, Hilditch TE, Wheldon TE, Gaze MN, Barrett A. Dosimetric considerations in 131I-MIBG therapy for neuroblastoma in children. Br J Radiol 1995;68:481–90.CrossRefPubMed Bolster A, Hilditch TE, Wheldon TE, Gaze MN, Barrett A. Dosimetric considerations in 131I-MIBG therapy for neuroblastoma in children. Br J Radiol 1995;68:481–90.CrossRefPubMed
5.
go back to reference Buckley SE, Gaze MN, Chittenden S, Partridge M, Lancaster D, Pearson A, et al. Dosimetry for fractionated (131)I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm 2007;22:105–12.CrossRefPubMed Buckley SE, Gaze MN, Chittenden S, Partridge M, Lancaster D, Pearson A, et al. Dosimetry for fractionated (131)I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm 2007;22:105–12.CrossRefPubMed
6.
go back to reference Buckley SE, Chittenden SJ, Saran F, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med 2009;50:1518–24.CrossRefPubMed Buckley SE, Chittenden SJ, Saran F, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med 2009;50:1518–24.CrossRefPubMed
7.
go back to reference Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 2007;14:569–85.CrossRefPubMed Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 2007;14:569–85.CrossRefPubMed
8.
go back to reference European Commission. Council directive 97/43/EURATOM of June 1997 on health protection of individuals against the dangers of ionising radiation in relation to medical exposure. Off J Eur Comm 1997;180:22–7. European Commission. Council directive 97/43/EURATOM of June 1997 on health protection of individuals against the dangers of ionising radiation in relation to medical exposure. Off J Eur Comm 1997;180:22–7.
9.
go back to reference O’Donoghue JA, Sgouros G, Divgi CR, Humm JL. Single-dose versus fractionated radioimmunotherapy: model comparisons for uniform tumor dosimetry. J Nucl Med 2000;41:538–47.PubMed O’Donoghue JA, Sgouros G, Divgi CR, Humm JL. Single-dose versus fractionated radioimmunotherapy: model comparisons for uniform tumor dosimetry. J Nucl Med 2000;41:538–47.PubMed
10.
go back to reference Eckerman KF, Endo A. MIRD: radionuclide data and decay schemes. 2nd ed. Reston: Society of Nuclear Medicine; 2007. Eckerman KF, Endo A. MIRD: radionuclide data and decay schemes. 2nd ed. Reston: Society of Nuclear Medicine; 2007.
11.
go back to reference Fielding SL, Flower MA, Ackery D, Kemshead JT, Lashford LS, Lewis I. Dosimetry of iodine 131 metaiodobenzylguanidine for treatment of resistant neuroblastoma: results of a UK study. Eur J Nucl Med 1991;18:308–16.CrossRefPubMed Fielding SL, Flower MA, Ackery D, Kemshead JT, Lashford LS, Lewis I. Dosimetry of iodine 131 metaiodobenzylguanidine for treatment of resistant neuroblastoma: results of a UK study. Eur J Nucl Med 1991;18:308–16.CrossRefPubMed
12.
go back to reference Flower MA, Fielding SL. Radiation dosimetry for 131I-mIBG therapy of neuroblastoma. Phys Med Biol 1996;41:1933–40.CrossRefPubMed Flower MA, Fielding SL. Radiation dosimetry for 131I-mIBG therapy of neuroblastoma. Phys Med Biol 1996;41:1933–40.CrossRefPubMed
13.
go back to reference Flux GD, Guy MJ, Papvasileiou P, South C, Chittenden SJ, Flower MA, et al. Absorbed dose ratios for repeated therapy of neuroblastoma with I-131 mIBG. Cancer Biother Radiopharm 2003;18:81–7.CrossRefPubMed Flux GD, Guy MJ, Papvasileiou P, South C, Chittenden SJ, Flower MA, et al. Absorbed dose ratios for repeated therapy of neuroblastoma with I-131 mIBG. Cancer Biother Radiopharm 2003;18:81–7.CrossRefPubMed
14.
go back to reference Gedik GK, Hoefnagel CA, Bais E, Valdés Olmos RA. 131I-MIBG therapy in metastatic phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2008;35:725–33.CrossRefPubMed Gedik GK, Hoefnagel CA, Bais E, Valdés Olmos RA. 131I-MIBG therapy in metastatic phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2008;35:725–33.CrossRefPubMed
15.
go back to reference Hoefnagel CA, Voûte PA, de Kraker J, Marcuse HR. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med 1987;28:308–14.PubMed Hoefnagel CA, Voûte PA, de Kraker J, Marcuse HR. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med 1987;28:308–14.PubMed
16.
go back to reference Hoefnagel CA, de Kraker J, Valdés Olmos RA, Voûte PA. [131I] MIBG as a first line treatment in advanced neuroblastoma. Q J Nucl Med 1995;39:61–4.PubMed Hoefnagel CA, de Kraker J, Valdés Olmos RA, Voûte PA. [131I] MIBG as a first line treatment in advanced neuroblastoma. Q J Nucl Med 1995;39:61–4.PubMed
17.
go back to reference Kimmig B, Brandeis WE, Eisenhut M, Bubeck B, Hermann HJ, zum Winkel K. Scintigraphy of a neuroblastoma with I-131 meta-iodobenzylguanidine. J Nucl Med 1984;25:773–5.PubMed Kimmig B, Brandeis WE, Eisenhut M, Bubeck B, Hermann HJ, zum Winkel K. Scintigraphy of a neuroblastoma with I-131 meta-iodobenzylguanidine. J Nucl Med 1984;25:773–5.PubMed
18.
go back to reference Klingebiel T, Treuner J, Ehninger G, Keller KD, Dopfer R, Feine U, et al. [131I]-metaiodobenzylguanidine in the treatment of metastatic neuroblastoma. Clinical, pharmacological and dosimetric aspects. Cancer Chemother Pharmacol 1989;25:143–8.CrossRefPubMed Klingebiel T, Treuner J, Ehninger G, Keller KD, Dopfer R, Feine U, et al. [131I]-metaiodobenzylguanidine in the treatment of metastatic neuroblastoma. Clinical, pharmacological and dosimetric aspects. Cancer Chemother Pharmacol 1989;25:143–8.CrossRefPubMed
19.
go back to reference Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, et al. Graves’ disease and radioiodine therapy. Is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin 2008;47:13–7.PubMed Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, et al. Graves’ disease and radioiodine therapy. Is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin 2008;47:13–7.PubMed
20.
go back to reference Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–88.PubMed Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–88.PubMed
21.
go back to reference Loh KC, Fitzgerald PA, Matthay KK, Yeo PP, Price DC. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Invest 1997;20:648–58. Loh KC, Fitzgerald PA, Matthay KK, Yeo PP, Price DC. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Invest 1997;20:648–58.
22.
go back to reference Mastrangelo R, Tornesello A, Mastrangelo S. Role of 131I-Metaiodobenzylguanidine in the treatment of neuroblastoma. Med Pediatr Oncol 1998;31:22–6.CrossRefPubMed Mastrangelo R, Tornesello A, Mastrangelo S. Role of 131I-Metaiodobenzylguanidine in the treatment of neuroblastoma. Med Pediatr Oncol 1998;31:22–6.CrossRefPubMed
23.
go back to reference Matthay K, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med 2001;42:1713–21.PubMed Matthay K, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med 2001;42:1713–21.PubMed
24.
go back to reference Monsieurs MA, Thierens HM, Vral A, Brans B, De Ridder L, Dierckx RA. Patient dosimetry after 131I-MIBG therapy for neuroblastoma and carcinoid tumours. Nucl Med Commun 2001;22:367–74.CrossRefPubMed Monsieurs MA, Thierens HM, Vral A, Brans B, De Ridder L, Dierckx RA. Patient dosimetry after 131I-MIBG therapy for neuroblastoma and carcinoid tumours. Nucl Med Commun 2001;22:367–74.CrossRefPubMed
25.
go back to reference Monsieurs MA, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for 131I-MIBG therapy for neuroendocrine tumours based on 123I-MIBG scans. Eur J Nucl Med Mol Imaging 2002;29:1581–7.CrossRefPubMed Monsieurs MA, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for 131I-MIBG therapy for neuroendocrine tumours based on 123I-MIBG scans. Eur J Nucl Med Mol Imaging 2002;29:1581–7.CrossRefPubMed
26.
go back to reference Oehme L, Dörr W, Wust P, Kotzerke J. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation: consequences for dosimetry. Nuklearmedizin 2008;47:205–9. German.PubMed Oehme L, Dörr W, Wust P, Kotzerke J. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation: consequences for dosimetry. Nuklearmedizin 2008;47:205–9. German.PubMed
27.
go back to reference Bolster AA, Hilditch TE, Wheldon TE. Dosimetric models and S factors for radiation doses to the bladder wall in children receiving therapeutic iodine-131-MIBG. J Nucl Med 1995;36:1530–2.PubMed Bolster AA, Hilditch TE, Wheldon TE. Dosimetric models and S factors for radiation doses to the bladder wall in children receiving therapeutic iodine-131-MIBG. J Nucl Med 1995;36:1530–2.PubMed
28.
go back to reference Schmidt M, Eschner W, Dietlein M, Theissen P, Schicha H. Established nuclear medicine techniques for tumour diagnosis (tumour SPECT): can they still compete with (18)F-FDG-PET? Nuklearmedizin 2005;44:37–48. German.PubMed Schmidt M, Eschner W, Dietlein M, Theissen P, Schicha H. Established nuclear medicine techniques for tumour diagnosis (tumour SPECT): can they still compete with (18)F-FDG-PET? Nuklearmedizin 2005;44:37–48. German.PubMed
29.
go back to reference Schmidt M, Simon T, Hero B, Eschner W, Dietlein M, Sudbrock F, et al. Is there a benefit of 131 I-MIBG therapy in the treatment of children with stage 4 neuroblastoma? A retrospective evaluation of The German Neuroblastoma Trial NB97 and implications for The German Neuroblastoma Trial NB2004. Nuklearmedizin 2006;45:145–51.PubMed Schmidt M, Simon T, Hero B, Eschner W, Dietlein M, Sudbrock F, et al. Is there a benefit of 131 I-MIBG therapy in the treatment of children with stage 4 neuroblastoma? A retrospective evaluation of The German Neuroblastoma Trial NB97 and implications for The German Neuroblastoma Trial NB2004. Nuklearmedizin 2006;45:145–51.PubMed
30.
go back to reference Schmidt M, Simon T, Hero B, Schicha H, Berthold F. The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer 2008;44:1552–58.CrossRefPubMed Schmidt M, Simon T, Hero B, Schicha H, Berthold F. The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer 2008;44:1552–58.CrossRefPubMed
31.
go back to reference Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implication of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–7.CrossRefPubMed Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implication of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–7.CrossRefPubMed
32.
go back to reference Shapiro B, Sisson JC, Wieland DM, Mangner TJ, Zempel SM, Mudgett E, et al. Radiopharmaceutical therapy of malignant pheochromocytoma with [131I]metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med 1991;35:269–76.PubMed Shapiro B, Sisson JC, Wieland DM, Mangner TJ, Zempel SM, Mudgett E, et al. Radiopharmaceutical therapy of malignant pheochromocytoma with [131I]metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med 1991;35:269–76.PubMed
33.
go back to reference Simon T, Hero B, Bongartz R, Schmidt M, Müller RP, Berthold F. Intensified external-beam radiation therapy improves the outcome of stage 4 neuroblastoma in children >1 year with residual local disease. Strahlenther Onkol 2006;182:389–94.CrossRefPubMed Simon T, Hero B, Bongartz R, Schmidt M, Müller RP, Berthold F. Intensified external-beam radiation therapy improves the outcome of stage 4 neuroblastoma in children >1 year with residual local disease. Strahlenther Onkol 2006;182:389–94.CrossRefPubMed
34.
go back to reference Sisson JC, Shapiro B, Hutchinson RJ, Carey JE, Zasadny KR, Zempel SA, et al. Predictors of toxicity in treating patients with neuroblastoma by radiolabeled metaiodobenzylguanidine. Eur J Nucl Med 1994;21:46–52.CrossRefPubMed Sisson JC, Shapiro B, Hutchinson RJ, Carey JE, Zasadny KR, Zempel SA, et al. Predictors of toxicity in treating patients with neuroblastoma by radiolabeled metaiodobenzylguanidine. Eur J Nucl Med 1994;21:46–52.CrossRefPubMed
35.
go back to reference Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med 1981;305:12–7.PubMedCrossRef Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med 1981;305:12–7.PubMedCrossRef
37.
go back to reference Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med 2008;38:308–20.CrossRefPubMed Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med 2008;38:308–20.CrossRefPubMed
38.
go back to reference Sudbrock F, Eschner W, Schmidt M, Simon T, Hero B, Schicha H. Dosimetry for therapeutic treatment of neuroblastoma by 131I-mIBG. Nuklearmedizin 2006;45:254–61. German.PubMed Sudbrock F, Eschner W, Schmidt M, Simon T, Hero B, Schicha H. Dosimetry for therapeutic treatment of neuroblastoma by 131I-mIBG. Nuklearmedizin 2006;45:254–61. German.PubMed
39.
go back to reference Sudbrock F, Boldt F, Kobe C, Eschner W, Schicha H. Radiation exposure in the environment of patients after application of radiopharmaceuticals. Part 1: diagnostic procedures. Nuklearmedizin 2008;47:267–74. German.PubMed Sudbrock F, Boldt F, Kobe C, Eschner W, Schicha H. Radiation exposure in the environment of patients after application of radiopharmaceuticals. Part 1: diagnostic procedures. Nuklearmedizin 2008;47:267–74. German.PubMed
40.
go back to reference Sudbrock F, Boldt F, Kobe C, Hammes J, Eschner W, Schicha H. Radiation exposure in the environment of patients after application of radiopharmaceuticals. Part 2: therapeutic procedures. Nuklearmedizin 2009;48:17–25. German.PubMed Sudbrock F, Boldt F, Kobe C, Hammes J, Eschner W, Schicha H. Radiation exposure in the environment of patients after application of radiopharmaceuticals. Part 2: therapeutic procedures. Nuklearmedizin 2009;48:17–25. German.PubMed
41.
go back to reference Tang HR, Da Silva AJ, Matthay K, Price DC, Huberty JP, Hawkins RA, et al. Neuroblastoma imaging using a combined CT scanner-scintillation camera and 131I-MIBG. J Nucl Med 2001;42:237–47.PubMed Tang HR, Da Silva AJ, Matthay K, Price DC, Huberty JP, Hawkins RA, et al. Neuroblastoma imaging using a combined CT scanner-scintillation camera and 131I-MIBG. J Nucl Med 2001;42:237–47.PubMed
42.
go back to reference Tepmongkol S, Heyman S. 131I MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. Med Pediatr Oncol 1999;32:427–31.CrossRefPubMed Tepmongkol S, Heyman S. 131I MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. Med Pediatr Oncol 1999;32:427–31.CrossRefPubMed
43.
go back to reference Tristam M, Alaamer AS, Fleming JS, Lewington VJ, Zivanovic MA. Iodine-131-metaiodobenzylguanidine dosimetry in cancer therapy: risk versus benefit. J Nucl Med 1996;37:1058–63.PubMed Tristam M, Alaamer AS, Fleming JS, Lewington VJ, Zivanovic MA. Iodine-131-metaiodobenzylguanidine dosimetry in cancer therapy: risk versus benefit. J Nucl Med 1996;37:1058–63.PubMed
44.
go back to reference Unak P, Cetinkaya B. Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 2005;62:861–9.CrossRefPubMed Unak P, Cetinkaya B. Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 2005;62:861–9.CrossRefPubMed
45.
go back to reference Vaidyanathan G, Zalutsky MR. No-carrier-added synthesis of meta-[131I]-iodobenzylguanidine. Appl Radiat Isot 1993;44:621–28.CrossRefPubMed Vaidyanathan G, Zalutsky MR. No-carrier-added synthesis of meta-[131I]-iodobenzylguanidine. Appl Radiat Isot 1993;44:621–28.CrossRefPubMed
Metadata
Title
Dosimetry for 131I-MIBG therapies in metastatic neuroblastoma, phaeochromocytoma and paraganglioma
Authors
Ferdinand Sudbrock
Matthias Schmidt
Thorsten Simon
Wolfgang Eschner
Frank Berthold
Harald Schicha
Publication date
01-07-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1391-7

Other articles of this Issue 7/2010

European Journal of Nuclear Medicine and Molecular Imaging 7/2010 Go to the issue