Skip to main content
Top
Published in: Radiological Physics and Technology 1/2009

01-01-2009

Dosimetric verification in inhomogeneous phantom geometries for the XiO radiotherapy treatment planning system with 6-MV photon beams

Authors: Ryosuke Kohno, Satoshi Kitou, Eriko Hirano, Satoru Kameoka, Tomonori Goka, Teiji Nishio, Tomoko Miyagishi, Takaki Ariji, Mitsuhiko Kawashima, Takashi Ogino

Published in: Radiological Physics and Technology | Issue 1/2009

Login to get access

Abstract

We have developed a practical dose verification method for radiotherapy treatment planning systems by using only a Farmer ionization chamber in inhomogeneous phantoms. In particular, we compared experimental dose verifications of multi-layer phantom geometries and laterally inhomogeneous phantom geometries for homogeneous and inhomogenous dose calculations by using the fast-Fourier-transform convolution, fast-superposition, and superposition in the XiO radiotherapy treatment-planning system. We applied the dose verification method to three kernel-based algorithms in various phantom geometries with water-, lung- and bone-equivalent media of different field sizes. These calculations were then compared with experimental measurements by use of the Farmer ionization chamber. The fast-Fourier-transform convolution algorithm overestimated the dose by about 8% in the lung phantom geometry. The superposition algorithm and the fast-superposition algorithm were both accurate to better than 2% when compared to the measurements even for complex geometries. Our dose verification method was able to clarify the differences and equivalences of the three kernel-based algorithms and measurements with use only of commonly available apparatus. This will be generally useful in commissioning of inhomogeneity-correction algorithms in the clinical practice of treatment planning.
Literature
1.
go back to reference AAPM report no. 85. Tissue inhomogeneity corrections for megavoltage photon beams. Madison: Medical Physics Publishing; 2004. AAPM report no. 85. Tissue inhomogeneity corrections for megavoltage photon beams. Madison: Medical Physics Publishing; 2004.
2.
go back to reference Van Dyk J, Barnett RB, Cygler JE, Shragge PC. Commisioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993;26:261–73.CrossRefPubMed Van Dyk J, Barnett RB, Cygler JE, Shragge PC. Commisioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993;26:261–73.CrossRefPubMed
3.
go back to reference Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60:191–201.CrossRefPubMed Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60:191–201.CrossRefPubMed
4.
go back to reference Nishio T, Kohno R, Mori S, Mizuno H, Hanyu Y, Takahashi Y. Quality assurance of treatment planning systems for X-ray beams. Jpn J Med Phys. 2008;27 Suppl 6. Nishio T, Kohno R, Mori S, Mizuno H, Hanyu Y, Takahashi Y. Quality assurance of treatment planning systems for X-ray beams. Jpn J Med Phys. 2008;27 Suppl 6.
5.
go back to reference IAEA Technical Reports Series No. 430. Comissioning and Quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: IAEA; 2005. IAEA Technical Reports Series No. 430. Comissioning and Quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: IAEA; 2005.
6.
go back to reference Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, et al. Quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25:1773–829.CrossRefPubMed Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, et al. Quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25:1773–829.CrossRefPubMed
7.
go back to reference ESTRO Booklet No. 7. Quality assurance of treatment planning systems practical examples for non-IMRT photon beams. Brussels: ESTRO; 2004. ESTRO Booklet No. 7. Quality assurance of treatment planning systems practical examples for non-IMRT photon beams. Brussels: ESTRO; 2004.
8.
go back to reference Miften M, Wiesmeyer M, Monthfer S, Krippner K. Implementation of FFT convolution and multigrid superposition models in the FOCUS RTP system. Phys Med Biol. 2000;45:817–33.CrossRefPubMed Miften M, Wiesmeyer M, Monthfer S, Krippner K. Implementation of FFT convolution and multigrid superposition models in the FOCUS RTP system. Phys Med Biol. 2000;45:817–33.CrossRefPubMed
9.
go back to reference Garcia-Vicente F, Minambres A, Jerez I, Modolell I, Torres JJ. Experimental validation tests of fast Fourier transform convolution and multigrid superposition algorithms for dose calculation in low-density media. Radiother Oncol. 2003;67:239–49.CrossRefPubMed Garcia-Vicente F, Minambres A, Jerez I, Modolell I, Torres JJ. Experimental validation tests of fast Fourier transform convolution and multigrid superposition algorithms for dose calculation in low-density media. Radiother Oncol. 2003;67:239–49.CrossRefPubMed
10.
go back to reference Miften M, Wiesmeyer M, Kapur A, Ma CM. Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system. J Appl Clin Med Phys. 2001;67:21–31.CrossRef Miften M, Wiesmeyer M, Kapur A, Ma CM. Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system. J Appl Clin Med Phys. 2001;67:21–31.CrossRef
11.
go back to reference Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knoos T, et al. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol. 2007;52:1363–85. Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knoos T, et al. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol. 2007;52:1363–85.
12.
go back to reference Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV X rays. Med Phys. 1985;12:188–96.CrossRefPubMed Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV X rays. Med Phys. 1985;12:188–96.CrossRefPubMed
13.
go back to reference Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16:577–92. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16:577–92.
14.
go back to reference Mackie TR, Bielajew AF, Rogers DWO, Battista JJ. Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys Med Biol. 1988;33:1–20.CrossRefPubMed Mackie TR, Bielajew AF, Rogers DWO, Battista JJ. Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys Med Biol. 1988;33:1–20.CrossRefPubMed
15.
go back to reference Boyer AL, Zhu Y, Wang L, Francois P. Fast Fourier transform convolution calculations of X-ray isodose distributions in homogeneous media. Med Phys. 1989;16:248–53.CrossRefPubMed Boyer AL, Zhu Y, Wang L, Francois P. Fast Fourier transform convolution calculations of X-ray isodose distributions in homogeneous media. Med Phys. 1989;16:248–53.CrossRefPubMed
16.
go back to reference Boyer AL. Shortening the calculation time of photon dose distributions in an inhomogeneous medium. Med Phys. 1984;11:552–4.CrossRefPubMed Boyer AL. Shortening the calculation time of photon dose distributions in an inhomogeneous medium. Med Phys. 1984;11:552–4.CrossRefPubMed
17.
go back to reference Boyer AL, Mok E. A photon dose distribution model employing convolution calculations. Med Phys. 1985;12:169–77.CrossRefPubMed Boyer AL, Mok E. A photon dose distribution model employing convolution calculations. Med Phys. 1985;12:169–77.CrossRefPubMed
18.
go back to reference Ezzel GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys. 2003;30:2089–115.CrossRef Ezzel GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys. 2003;30:2089–115.CrossRef
19.
go back to reference Wu A, Zwicker RD, Kalend AM, Zheng Z. Comments on dose measurements for a narrow beam in radiosurgery. Med Phys. 1993;20:777–9.CrossRefPubMed Wu A, Zwicker RD, Kalend AM, Zheng Z. Comments on dose measurements for a narrow beam in radiosurgery. Med Phys. 1993;20:777–9.CrossRefPubMed
20.
go back to reference Carrasco P, Jornet N, Duch MA, Ginjaume M, Eudaldo T, Jurado D, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys. 2004;31:2899–911.CrossRefPubMed Carrasco P, Jornet N, Duch MA, Ginjaume M, Eudaldo T, Jurado D, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys. 2004;31:2899–911.CrossRefPubMed
21.
go back to reference Carrasco P, Jornet N, Duch MA, Panettieri V, Weber L, Eudaldo T, et al. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities. Med Phys. 2007;34:3323–33.CrossRefPubMed Carrasco P, Jornet N, Duch MA, Panettieri V, Weber L, Eudaldo T, et al. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities. Med Phys. 2007;34:3323–33.CrossRefPubMed
22.
go back to reference Kohno R, Hirano E, Nishio T, Miyagishi T, Goka T, Kawashima M, et al. Dosimteric evaliation of a MOSFET detector for clinical application in photon therapy. Radiol Phys Technol. 2008;1:55–61.CrossRefPubMed Kohno R, Hirano E, Nishio T, Miyagishi T, Goka T, Kawashima M, et al. Dosimteric evaliation of a MOSFET detector for clinical application in photon therapy. Radiol Phys Technol. 2008;1:55–61.CrossRefPubMed
23.
go back to reference Nesrin D, Leonid BL, Anil S. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy. Phys Med Biol. 2002;47:4121–30.CrossRef Nesrin D, Leonid BL, Anil S. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy. Phys Med Biol. 2002;47:4121–30.CrossRef
Metadata
Title
Dosimetric verification in inhomogeneous phantom geometries for the XiO radiotherapy treatment planning system with 6-MV photon beams
Authors
Ryosuke Kohno
Satoshi Kitou
Eriko Hirano
Satoru Kameoka
Tomonori Goka
Teiji Nishio
Tomoko Miyagishi
Takaki Ariji
Mitsuhiko Kawashima
Takashi Ogino
Publication date
01-01-2009
Publisher
Springer Japan
Published in
Radiological Physics and Technology / Issue 1/2009
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-008-0049-7

Other articles of this Issue 1/2009

Radiological Physics and Technology 1/2009 Go to the issue