Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Dosimetric comparison between jaw tracking and static jaw techniques in intensity-modulated radiotherapy

Authors: Zhongsu Feng, Hao Wu, Yibao Zhang, Yunjun Zhang, Jinsheng Cheng, Xu Su

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Purpose

To compare the dosimetric differences between jaw tracking technique (JTT) and static jaw technique (SJT) in dynamic intensity-modulated radiotherapy (d-IMRT) and assess the potential advantages of jaw tracking technique.

Methods

Two techniques, jaw tracking and static jaw, were used respectively to develop the d-IMRT plans for 28 cancer patients with various lesion sites: head and neck, lungs, esophageal, abdominal, prostate, rectal and cervical. The dose volume histograms (DVH) and selected dosimetric indexes for the whole body and for organs at risk (OARs) were compared. A two dimensional ionization chamber Array Seven29 (PTW, Freiburg, Germany) and OCTAVIUS Octagonal phantom (PTW, Freiburg, Germany) were used to verify all the plans.

Results

For all patients, the treatment plans using both techniques met the clinical requirements. The V5, V10, V20, V30, V40 (volumes receiving 5, 10, 20, 30 and 40 Gy at least, respectively), mean dose (Dmean) for the whole body and V5, V10, V20, Dmean for lungs in the JTT d-IMRT plans were significantly less than the corresponding values of the SJT d-IMRT plans (p < 0.001). The JTT d-IMRT plans deposited lower maximum dose (Dmax) to the lens, eyes, brainstem, spinal cord, and right optic nerve, the doses reductions for these OARs ranged from 2.2% to 28.6%. The JTT d-IMRT plans deposited significantly lower Dmean to various OARs (all p values < 0.05), the mean doses reductions for these OARs ranged from 1.1% to 31.0%, and the value reductions depend on the volume and the location of the OARs. The γ evaluation method showed an excellent agreement between calculation and measurement for all techniques with criteria of 3%/3 mm.

Conclusions

Both jaw tracking and static jaw d-IMRT plans can achieve comparable target dose coverage. JTT displays superior OARs sparing than SJT plans. These results are of clinical importance, especially for the patients with large and complex targets but close to some highly radio-sensitive organs to spare, and for patients with local recurrent or secondary primary malignant lesion within a previously irradiated area.
Literature
1.
go back to reference Verhey LJ. Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin Radiat Oncol. 1999;9(1):78–98.CrossRefPubMed Verhey LJ. Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin Radiat Oncol. 1999;9(1):78–98.CrossRefPubMed
2.
go back to reference LoSasso T, Chui CS, Ling CC. Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med Phys. 1998;25(10):1919–27.CrossRefPubMed LoSasso T, Chui CS, Ling CC. Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med Phys. 1998;25(10):1919–27.CrossRefPubMed
3.
go back to reference Cadman P, McNutt T, Bzdusek K. Validation of physics improvements for IMRT with a commercial treatment-planning system. J Appl Clin Med Phys. 2005;6:74–86.CrossRefPubMed Cadman P, McNutt T, Bzdusek K. Validation of physics improvements for IMRT with a commercial treatment-planning system. J Appl Clin Med Phys. 2005;6:74–86.CrossRefPubMed
4.
go back to reference Joy S, Starkschall G, Kry S, Salehpour M, White RA, Lin SH, et al. Dosimetric effects of jaw tracking in step-and-shoot intensity-modulated radiation therapy. J Appl Clin Med Phys. 2012;13(2):136–45. Joy S, Starkschall G, Kry S, Salehpour M, White RA, Lin SH, et al. Dosimetric effects of jaw tracking in step-and-shoot intensity-modulated radiation therapy. J Appl Clin Med Phys. 2012;13(2):136–45.
5.
go back to reference Schmidhalter D, Fix MK, Niederer P, Mini R, Manser P. Leaf transmission reduction using moving jaws for dynamic MLC IMRT. Med Phys. 2007;34(9):3674–87.CrossRefPubMed Schmidhalter D, Fix MK, Niederer P, Mini R, Manser P. Leaf transmission reduction using moving jaws for dynamic MLC IMRT. Med Phys. 2007;34(9):3674–87.CrossRefPubMed
6.
go back to reference Kim JI, Park JM, Park SY, Choi CH, Wu HG, Ye SJ. Assessment of potential jaw-tracking advantage using control point sequences of VMAT planning. J Appl Clin Med Phys. 2014;15:160–8. Kim JI, Park JM, Park SY, Choi CH, Wu HG, Ye SJ. Assessment of potential jaw-tracking advantage using control point sequences of VMAT planning. J Appl Clin Med Phys. 2014;15:160–8.
7.
go back to reference Bragg CM, Conway J, Robinson MH. The role of intensity-modulated radiotherapy in the treatment of parotid tumors. Int J Radiat Oncol Biol Phys. 2002;52(3):729–38.CrossRefPubMed Bragg CM, Conway J, Robinson MH. The role of intensity-modulated radiotherapy in the treatment of parotid tumors. Int J Radiat Oncol Biol Phys. 2002;52(3):729–38.CrossRefPubMed
8.
go back to reference Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRefPubMed Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRefPubMed
9.
go back to reference Bradley JD, Hope A, El Naqa I, Apte A, Lindsay PE, Bosch W, et al. A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys. 2007;69(4):985–92.CrossRefPubMedCentralPubMed Bradley JD, Hope A, El Naqa I, Apte A, Lindsay PE, Bosch W, et al. A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys. 2007;69(4):985–92.CrossRefPubMedCentralPubMed
10.
go back to reference Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non–small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys. 2006;66(5):1399–407.CrossRefPubMed Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non–small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys. 2006;66(5):1399–407.CrossRefPubMed
11.
go back to reference Tucker SL, Liu HH, Wang S, Wei X, Liao Z, Komaki R, et al. Dose–volume modeling of the risk of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys. 2006;66(3):754–61.CrossRefPubMed Tucker SL, Liu HH, Wang S, Wei X, Liao Z, Komaki R, et al. Dose–volume modeling of the risk of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys. 2006;66(3):754–61.CrossRefPubMed
12.
go back to reference Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, et al. Final toxicity results of a radiation-dose escalation study in patients with non–small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006;65(4):1075–86.CrossRefPubMed Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, et al. Final toxicity results of a radiation-dose escalation study in patients with non–small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006;65(4):1075–86.CrossRefPubMed
13.
go back to reference Chera BS, Rodriguez C, Morris CG, Louis D, Yeung D, Li Z, et al. Dosimetric comparison of three different involved nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75:1173–80.CrossRefPubMed Chera BS, Rodriguez C, Morris CG, Louis D, Yeung D, Li Z, et al. Dosimetric comparison of three different involved nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75:1173–80.CrossRefPubMed
14.
go back to reference Zhuang M, Zhang T, Chen Z, Lin Z, Li D, Peng X, et al. Advanced nasopharyngeal carcinoma radiotherapy with volumetric modulated arcs and the potential role of flattening filter-free beams. Radiat Oncol. 2013;8:120.CrossRefPubMedCentralPubMed Zhuang M, Zhang T, Chen Z, Lin Z, Li D, Peng X, et al. Advanced nasopharyngeal carcinoma radiotherapy with volumetric modulated arcs and the potential role of flattening filter-free beams. Radiat Oncol. 2013;8:120.CrossRefPubMedCentralPubMed
15.
go back to reference Nicolini G, Ghosh-Laskar S, Shrivastava SK, Banerjee S, Chaudhary S, Agarwal JP, et al. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study. Int J Radiat Oncol Biol Phys. 2012;84:553–60.CrossRefPubMed Nicolini G, Ghosh-Laskar S, Shrivastava SK, Banerjee S, Chaudhary S, Agarwal JP, et al. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study. Int J Radiat Oncol Biol Phys. 2012;84:553–60.CrossRefPubMed
16.
go back to reference Subramaniam S, Thirumalaiswamy S, Srinivas C, Gandhi GA, Kathirvel M, Kumar KK, et al. Chest wall radiotherapy with volumetric modulated arcs and the potential role of flattening filter free photon beams. Strahlenther Onkol. 2012;188:484–91.CrossRefPubMed Subramaniam S, Thirumalaiswamy S, Srinivas C, Gandhi GA, Kathirvel M, Kumar KK, et al. Chest wall radiotherapy with volumetric modulated arcs and the potential role of flattening filter free photon beams. Strahlenther Onkol. 2012;188:484–91.CrossRefPubMed
17.
go back to reference Scorsetti M, Alongi F, Castiglioni S, Clivio A, Fogliata A, Lobefalo F, et al. Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments. Radiat Oncol. 2011;6:113.CrossRefPubMedCentralPubMed Scorsetti M, Alongi F, Castiglioni S, Clivio A, Fogliata A, Lobefalo F, et al. Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments. Radiat Oncol. 2011;6:113.CrossRefPubMedCentralPubMed
18.
go back to reference Georg D, Knöös T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38:1280–93.CrossRefPubMed Georg D, Knöös T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38:1280–93.CrossRefPubMed
19.
go back to reference Cashmore J, Ramtohul M, Ford D. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams. Int J Radiat Oncol Biol Phys. 2011;80(4):1220–7.CrossRefPubMed Cashmore J, Ramtohul M, Ford D. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams. Int J Radiat Oncol Biol Phys. 2011;80(4):1220–7.CrossRefPubMed
Metadata
Title
Dosimetric comparison between jaw tracking and static jaw techniques in intensity-modulated radiotherapy
Authors
Zhongsu Feng
Hao Wu
Yibao Zhang
Yunjun Zhang
Jinsheng Cheng
Xu Su
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0329-4

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue