Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 12/2009

Open Access 01-12-2009 | Original Article

Dose, timing, schedule, and the choice of targeted epitope alter the efficacy of anti-CD22 immunotherapy in mice bearing human lymphoma xenografts

Authors: Robert T. O’Donnell, Yunpeng Ma, Hayes C. McKnight, David Pearson, Joseph M. Tuscano

Published in: Cancer Immunology, Immunotherapy | Issue 12/2009

Login to get access

Abstract

CD22 is a cell-surface adhesion molecule on most B-cell NHL, so it is a promising target for immunotherapy. HB22.7 is an anti-CD22 mAb that binds the two NH2-terminal immunoglobulin domains and specifically blocks the interaction of CD22 with its ligand. CD22-blocking mAbs induce apoptosis in neoplastic B-cells and are functionally distinguishable from other anti-CD22 mAbs. This study assessed the optimal dose, route, schedule, and the targeted CD22 epitope. Raji NHL-bearing nude mice were studied. A non-blocking anti-CD22 mAb (HB22.27) was used as a control. HB22.27 had minimal effect, whereas HB22.7 improved survival and shrank tumors substantially. HB22.7 doses greater than 1.4 mg/week did not further increase efficacy (or toxicity). Tumors less than 200 mm3 had a higher response rate than did larger tumors. Various schedules of HB22.7 administration were tested; one dose every other week was more effective than more or less frequent dosing. Pharmacokinetic studies revealed that the half-life of HB22.7 was 28 days; this correlated with the time needed to re-populate cell-surface CD22 after treatment with HB22.7. Immuno-PET showed that NHL was rapidly and specifically targeted by copper-64-labeled-HB22.7. This study provided data as to an optimal dose, route, schedule and interval between doses of HB22.7.
Literature
1.
go back to reference Molina A (2008) A decade of rituximab: improving survival outcomes in non-Hodgkin’s lymphoma. Ann Rev Med 59:237–250PubMedCrossRef Molina A (2008) A decade of rituximab: improving survival outcomes in non-Hodgkin’s lymphoma. Ann Rev Med 59:237–250PubMedCrossRef
2.
go back to reference Sato S, Tuscano JM, Inaoki M, Tedder TF (1998) CD22 negatively, positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol 10(4):287–297PubMedCrossRef Sato S, Tuscano JM, Inaoki M, Tedder TF (1998) CD22 negatively, positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol 10(4):287–297PubMedCrossRef
3.
go back to reference Williamson JM, Grigor I, Smith ME et al (1987) Ploidy, proliferative activity, cluster differentiation antigen expression, clinical remission in high-grade non-Hodgkin’s lymphoma. Histopathology 11(10):1043–1054PubMed Williamson JM, Grigor I, Smith ME et al (1987) Ploidy, proliferative activity, cluster differentiation antigen expression, clinical remission in high-grade non-Hodgkin’s lymphoma. Histopathology 11(10):1043–1054PubMed
4.
go back to reference Law CL, Aruffo A, Chandran KA, Doty RT (1995) Ig domains 1, 2 of murine CD22 constitute the ligand-binding domain, bind multiple sialylated ligands expressed on B, T cells. J Immunol 155(7):3368–3376PubMed Law CL, Aruffo A, Chandran KA, Doty RT (1995) Ig domains 1, 2 of murine CD22 constitute the ligand-binding domain, bind multiple sialylated ligands expressed on B, T cells. J Immunol 155(7):3368–3376PubMed
5.
go back to reference Tedder TF, Tuscano J, Sato S, Kehrl JH (1997) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15:481–504PubMedCrossRef Tedder TF, Tuscano J, Sato S, Kehrl JH (1997) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15:481–504PubMedCrossRef
6.
go back to reference Engel P, Wagner N, Miller AS, Tedder TF (1995) Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181(4):1581–1586PubMedCrossRef Engel P, Wagner N, Miller AS, Tedder TF (1995) Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181(4):1581–1586PubMedCrossRef
7.
go back to reference Poe JC, Fujimoto Y, Haesegawa M et al (2004) CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 5(4):1078–1087PubMedCrossRef Poe JC, Fujimoto Y, Haesegawa M et al (2004) CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 5(4):1078–1087PubMedCrossRef
8.
go back to reference Tuscano J, Engel P, Tedder TF, Kehrl JH (1996) Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 87(11):4723–4730PubMed Tuscano J, Engel P, Tedder TF, Kehrl JH (1996) Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 87(11):4723–4730PubMed
9.
go back to reference Tuscano JM, Riva A, Toscano SN, Tedder TF, Kehrl JH (1999) CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 94(4):1382–1392PubMed Tuscano JM, Riva A, Toscano SN, Tedder TF, Kehrl JH (1999) CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 94(4):1382–1392PubMed
10.
go back to reference Tuscano JM, O’Donnell RT, Miers LA et al (2003) The anti-CD22 ligand blocking antibody, HB22.7, has independent lymphomacidal properties, and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101:3641–3664PubMedCrossRef Tuscano JM, O’Donnell RT, Miers LA et al (2003) The anti-CD22 ligand blocking antibody, HB22.7, has independent lymphomacidal properties, and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101:3641–3664PubMedCrossRef
11.
go back to reference Leonard M, Coleman JP, Ketas JC et al (2003) Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol 21(16):3051–3059PubMedCrossRef Leonard M, Coleman JP, Ketas JC et al (2003) Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol 21(16):3051–3059PubMedCrossRef
12.
go back to reference Carnahan J, Wang P, Kendall R et al (2003) Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 9(10 pt 2):3982S–3990SPubMed Carnahan J, Wang P, Kendall R et al (2003) Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 9(10 pt 2):3982S–3990SPubMed
13.
go back to reference McCarthy DW, Shefer RE, Klinkowstein RE et al (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43PubMedCrossRef McCarthy DW, Shefer RE, Klinkowstein RE et al (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43PubMedCrossRef
14.
go back to reference Meares CF, McCall MJ, Reardon DT, Goodwin DA, Diamanti CI, McTigue M (1984) Conjugation of antibodies with bifunctional chelating agents: isothiocyanate, bromoacetamide reagents, methods of analysis, subsequent addition of metal ions. Anal Biochem 142:68–78PubMedCrossRef Meares CF, McCall MJ, Reardon DT, Goodwin DA, Diamanti CI, McTigue M (1984) Conjugation of antibodies with bifunctional chelating agents: isothiocyanate, bromoacetamide reagents, methods of analysis, subsequent addition of metal ions. Anal Biochem 142:68–78PubMedCrossRef
15.
go back to reference Tai YC, Chatziioannou AF, Yang Y et al (2003) MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 48:1519–1537PubMedCrossRef Tai YC, Chatziioannou AF, Yang Y et al (2003) MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 48:1519–1537PubMedCrossRef
16.
go back to reference Chatziioannou A, Tai YC, Doshi N, Cherry SR (2001) Detector development for microPET II: a 1 micron resolution PET scanner for small animal imaging. Phys Med Biol 46:2899–2919PubMedCrossRef Chatziioannou A, Tai YC, Doshi N, Cherry SR (2001) Detector development for microPET II: a 1 micron resolution PET scanner for small animal imaging. Phys Med Biol 46:2899–2919PubMedCrossRef
17.
go back to reference John B, Herrin BR, Raman C, et al. (2003) The B cell co-receptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J Immunol. 170(7):3534–43 John B, Herrin BR, Raman C, et al. (2003) The B cell co-receptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J Immunol. 170(7):3534–43
18.
go back to reference Phelps ME (2000) Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233PubMedCrossRef Phelps ME (2000) Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233PubMedCrossRef
19.
go back to reference Winnard P Jr, Raman V (2003) Real time non-invasive imaging of receptor-ligand interactions in vivo. J Cell Biochem 90:454–463PubMedCrossRef Winnard P Jr, Raman V (2003) Real time non-invasive imaging of receptor-ligand interactions in vivo. J Cell Biochem 90:454–463PubMedCrossRef
20.
go back to reference Chatziioannou A, Qi J, Moore A et al (2000) Comparison of 3-D maximum a posteriori, filtered back projection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 19:507–512PubMedCrossRef Chatziioannou A, Qi J, Moore A et al (2000) Comparison of 3-D maximum a posteriori, filtered back projection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 19:507–512PubMedCrossRef
21.
go back to reference Haas KM, Sen S, Sanfrod IG et al (2006) CD22 ligand binding regulates normal, malignant B lymphocyte survival in vivo. J Immunol 177(5):3063–3073PubMed Haas KM, Sen S, Sanfrod IG et al (2006) CD22 ligand binding regulates normal, malignant B lymphocyte survival in vivo. J Immunol 177(5):3063–3073PubMed
22.
go back to reference Poe JC, Fujimoto Y, Hasegawa M et al (2004) CD22 regulates B lymphocyte function in vivo through both ligand-dependent, ligand independent mechanisms. Nat Immunol 5(10):1078–1087PubMedCrossRef Poe JC, Fujimoto Y, Hasegawa M et al (2004) CD22 regulates B lymphocyte function in vivo through both ligand-dependent, ligand independent mechanisms. Nat Immunol 5(10):1078–1087PubMedCrossRef
23.
go back to reference Gordon LN, Grow WB, Pusateri A, et al. Phase II trial of individualized rituximab dosing for patients with CD20-postive lymphoproliferative disorders. 2005; 23(6):1096–102 Gordon LN, Grow WB, Pusateri A, et al. Phase II trial of individualized rituximab dosing for patients with CD20-postive lymphoproliferative disorders. 2005; 23(6):1096–102
24.
go back to reference Hale G, Rebello P, Brettman LR et al (2004) Blood concentrations of alemtuzumab, antiglobin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood 104:948–955PubMedCrossRef Hale G, Rebello P, Brettman LR et al (2004) Blood concentrations of alemtuzumab, antiglobin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood 104:948–955PubMedCrossRef
Metadata
Title
Dose, timing, schedule, and the choice of targeted epitope alter the efficacy of anti-CD22 immunotherapy in mice bearing human lymphoma xenografts
Authors
Robert T. O’Donnell
Yunpeng Ma
Hayes C. McKnight
David Pearson
Joseph M. Tuscano
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 12/2009
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0713-8

Other articles of this Issue 12/2009

Cancer Immunology, Immunotherapy 12/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine