Skip to main content
Top
Published in: Osteoporosis International 1/2011

01-01-2011 | Original Article

Dose–response effect of 40 weeks of resistance training on bone mineral density in older adults

Authors: D. A. Bemben, M. G. Bemben

Published in: Osteoporosis International | Issue 1/2011

Login to get access

Abstract

Summary

Resistance training is becoming popular for maintaining bone health. Previous studies examined high intensity exercise; we compared high and low intensity resistance training performed 2 or 3 days per week in older adults. We found positive bone density responses for the hip and spine for all types of resistance training.

Introduction

This study determined the dose–response effect of resistance training on lumbar spine, proximal femur, and total body bone mineral density (BMD) in older men and women (55–74 years).

Methods

Subjects included 45 men and 79 women who were assigned to one of the following training groups: 1—high intensity (80% 1RM), 2 days/week (2HI); 2—low intensity (40% 1RM), 2 days/week (2LI); 3—high intensity (80% 1RM), 3 days/week (3HI); and 4—low intensity (40% 1RM), 3 days/week (3LI). Bone scans (dual energy X-ray absorptiometry) were performed at baseline and after 40 weeks of training. Muscular strength (1-repetition maximum) was assessed every 5 weeks.

Results

There were significant trial (p < 0.05) effects but no significant trial × training group interactions for the BMD sites. Spine, trochanter, and total hip BMD increased from baseline to 40 weeks; however, the total body BMD site decreased in the 3LI group. Men and women exhibited similar improvements for the trochanter and total hip sites but the percent change in the spine tended (p = 0.054) to be higher for men (1.8%) than women (0.4%).

Conclusions

The resistance training programs, regardless of intensity and frequency, were effective in improving BMD of the proximal femur and lumbar spine but not the total body. Both men and women responded similarly for the hip sites but men show a greater response at the lumbar spine than women.
Literature
1.
go back to reference Burge R, Dawson-Hughs B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475. doi:10.1359/JBMR.061113 CrossRefPubMed Burge R, Dawson-Hughs B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475. doi:10.​1359/​JBMR.​061113 CrossRefPubMed
2.
go back to reference Melton LJ (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141CrossRefPubMed Melton LJ (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141CrossRefPubMed
3.
go back to reference Burr DB (1997) Commentary: muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12:1547–1551CrossRefPubMed Burr DB (1997) Commentary: muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12:1547–1551CrossRefPubMed
4.
go back to reference Hawkins SA, Wiswell RA, Schroeder ET (2002) The relationship between bone adaptations to resistance exercise and reproductive-hormone levels. JAPA 10:65–75 Hawkins SA, Wiswell RA, Schroeder ET (2002) The relationship between bone adaptations to resistance exercise and reproductive-hormone levels. JAPA 10:65–75
5.
go back to reference Kerr D, Morton A, Dick I, Prince R (1996) Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 11:218–225CrossRefPubMed Kerr D, Morton A, Dick I, Prince R (1996) Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 11:218–225CrossRefPubMed
6.
go back to reference Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ (1994) Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. JAMA 272:1909–1914CrossRefPubMed Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ (1994) Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. JAMA 272:1909–1914CrossRefPubMed
7.
go back to reference Kohrt WM, Snead DB, Slatopolsky E, Birge SJ (1996) Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 10:1303–1311CrossRef Kohrt WM, Snead DB, Slatopolsky E, Birge SJ (1996) Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 10:1303–1311CrossRef
8.
go back to reference Menkes A, Mazel S, Redmond RA, Koffler K, Libanati CR, Gundberg CM, Zizic TM, Hagberg JM, Prately RE, Hurley BF (1993) Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 74:2478–2484PubMed Menkes A, Mazel S, Redmond RA, Koffler K, Libanati CR, Gundberg CM, Zizic TM, Hagberg JM, Prately RE, Hurley BF (1993) Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 74:2478–2484PubMed
9.
go back to reference Vincent KR, Braith RW (2002) Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc 34:17–23PubMed Vincent KR, Braith RW (2002) Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc 34:17–23PubMed
10.
go back to reference Bemben DA, Fetters NL, Bemben MG, Nabavi N, Koh ET (2000) Musculoskeletal responses to high- and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc 32:1949–1957CrossRefPubMed Bemben DA, Fetters NL, Bemben MG, Nabavi N, Koh ET (2000) Musculoskeletal responses to high- and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc 32:1949–1957CrossRefPubMed
11.
go back to reference Pruitt LA, Taaffe DR, Marcus R (1995) Effects of a one-year high-intensity versus low-intensity resistance program on bone mineral density in older women. J Bone Miner Res 10:1788–1795CrossRefPubMed Pruitt LA, Taaffe DR, Marcus R (1995) Effects of a one-year high-intensity versus low-intensity resistance program on bone mineral density in older women. J Bone Miner Res 10:1788–1795CrossRefPubMed
12.
go back to reference Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417CrossRefPubMed Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417CrossRefPubMed
13.
go back to reference Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL, Flint-Wagner HG, Harris RB, Teixeira PJ (2003) Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc 35:10–17CrossRefPubMed Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL, Flint-Wagner HG, Harris RB, Teixeira PJ (2003) Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc 35:10–17CrossRefPubMed
14.
go back to reference Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom 11:75–91. doi:10.1016/j.jocd.2007.12.2007 CrossRefPubMed Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom 11:75–91. doi:10.​1016/​j.​jocd.​2007.​12.​2007 CrossRefPubMed
15.
go back to reference Musgrave KO, Giambalvo L, Leclerc HL, Cook RA (1989) Validation of a quantitative food frequency questionnaire for rapid assessment of dietary calcium intake. J Am Diet Assoc 89:1484–1488PubMed Musgrave KO, Giambalvo L, Leclerc HL, Cook RA (1989) Validation of a quantitative food frequency questionnaire for rapid assessment of dietary calcium intake. J Am Diet Assoc 89:1484–1488PubMed
16.
go back to reference NIH Consensus Conference (1994) Optimal calcium intake. JAMA 272:1942–1948CrossRef NIH Consensus Conference (1994) Optimal calcium intake. JAMA 272:1942–1948CrossRef
17.
go back to reference Maddalozzo GF, Snow CM (2000) High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 66:399–404CrossRefPubMed Maddalozzo GF, Snow CM (2000) High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 66:399–404CrossRefPubMed
18.
go back to reference Maddalozzo G, Widrick JJ, Cardinal BJ, Winters-Stone KM, Hoffman MA, Snow CM (2007) The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women. Bone 40:1244–1251CrossRefPubMed Maddalozzo G, Widrick JJ, Cardinal BJ, Winters-Stone KM, Hoffman MA, Snow CM (2007) The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women. Bone 40:1244–1251CrossRefPubMed
19.
go back to reference Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31:45–50CrossRefPubMed Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31:45–50CrossRefPubMed
20.
go back to reference Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947CrossRefPubMed Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947CrossRefPubMed
21.
go back to reference Riggs BL, Khosla S, Melton LJ III (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773CrossRefPubMed Riggs BL, Khosla S, Melton LJ III (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773CrossRefPubMed
22.
go back to reference Damien E, Price JS, Lanyon LE (1998) The estrogen receptor’s involvement in osteoblasts’ adaptive response to mechanical strain. J Bone Miner Res 13:1275–1282CrossRefPubMed Damien E, Price JS, Lanyon LE (1998) The estrogen receptor’s involvement in osteoblasts’ adaptive response to mechanical strain. J Bone Miner Res 13:1275–1282CrossRefPubMed
23.
go back to reference Nieves JW, Komar L, Cosman F, Lindsay R (1998) Calcium potentiates the effects of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 67:18–24PubMed Nieves JW, Komar L, Cosman F, Lindsay R (1998) Calcium potentiates the effects of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 67:18–24PubMed
24.
go back to reference Going S, Lohman T, Houtkooper L, Metcalfe L, Flint-Wagner H, Blew R, Stanford V, Cussler E, Martin J, Teixeira P, Harris M, Milliken L, Figueroa-Galvez A, Weber J (2003) Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int 14:637–643. doi:10.1007/s00198-003-1436-x CrossRefPubMed Going S, Lohman T, Houtkooper L, Metcalfe L, Flint-Wagner H, Blew R, Stanford V, Cussler E, Martin J, Teixeira P, Harris M, Milliken L, Figueroa-Galvez A, Weber J (2003) Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int 14:637–643. doi:10.​1007/​s00198-003-1436-x CrossRefPubMed
25.
26.
go back to reference Von Stengal SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99:181–188. doi:10.1152/japplphysiol.01260.2004 CrossRef Von Stengal SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99:181–188. doi:10.​1152/​japplphysiol.​01260.​2004 CrossRef
27.
go back to reference Von Stengal S, Kemmler W, Lauber D, Kalender WA, Engelke K (2007) Differential effects of strength versus power training on bone mineral density in postmenopausal women: a 2-year longitudinal study. Br J Sports Med 41:649–655. doi:10.1136/bjsp.2006.033480 CrossRef Von Stengal S, Kemmler W, Lauber D, Kalender WA, Engelke K (2007) Differential effects of strength versus power training on bone mineral density in postmenopausal women: a 2-year longitudinal study. Br J Sports Med 41:649–655. doi:10.​1136/​bjsp.​2006.​033480 CrossRef
Metadata
Title
Dose–response effect of 40 weeks of resistance training on bone mineral density in older adults
Authors
D. A. Bemben
M. G. Bemben
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 1/2011
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1182-9

Other articles of this Issue 1/2011

Osteoporosis International 1/2011 Go to the issue