Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Dose distribution of intensity-modulated proton therapy with and without a multi-leaf collimator for the treatment of maxillary sinus cancer: a comparative effectiveness study

Authors: Soichi Sugiyama, Kuniaki Katsui, Yuki Tominaga, Takahiro Waki, Norihisa Katayama, Hidenobu Matsuzaki, Shin Kariya, Masahiro Kuroda, Kazunori Nishizaki, Susumu Kanazawa

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Severe complications, such as eye damage and dysfunciton of salivary glands, have been reported after radiotherapy among patients with head and neck cancer. Complications such as visual impairment have also been reported after proton therapy with pencil beam scanning (PBS). In the case of PBS, collimation can sharpen the penumbra towards surrounding normal tissue in the low energy region of the proton beam. In the current study, we examined how much the dose to the normal tissue was reduced by when intensity-modulated proton therapy (IMPT) was performed using a multi-leaf collimator (MLC) for patients with maxillary sinus cancer.

Methods

Computed tomography findings of 26 consecutive patients who received photon therapy at Okayama University Hospital were used in this study. We compared D2% of the region of interest (ROI; ROI-D2%) and the mean dose of ROI (ROI-mean) with and without the use of an MLC. The organs at risk (OARs) were the posterior retina, lacrimal gland, eyeball, and parotid gland. IMPT was performed for all patients. The spot size was approximately 5–6 mm at the isocenter. The collimator margin was calculated by enlarging the maximum outline of the target from the beam’s eye view and setting the margin to 6 mm. All plans were optimized with the same parameters.

Results

The mean of ROI-D2% for the ipsilateral optic nerve was significantly reduced by 0.48 Gy, and the mean of ROI-mean for the ipsilateral optic nerve was significantly reduced by 1.04 Gy. The mean of ROI-mean to the optic chiasm was significantly reduced by 0.70 Gy. The dose to most OARs and the planning at risk volumes were also reduced.

Conclusions

Compared with the plan involving IMPT without an MLC, in the dose plan involving IMPT using an MLC for maxillary sinus cancer, the dose to the optic nerve and optic chiasm were significantly reduced, as measured by the ROI-D2% and the ROI-mean. These findings demonstrate that the use of an MLC during IMPT for maxillary sinus cancer may be useful for preserving vision and preventing complications.
Literature
1.
go back to reference Chopra S, Kamdar DP, Cohen DS, Heilbrun LK, Smith D, Kim H, et al. Outcomes of nonsurgical management of locally advanced carcinomas of the sinonasal cavity. Laryngoscope. 2017;127:855–61.CrossRef Chopra S, Kamdar DP, Cohen DS, Heilbrun LK, Smith D, Kim H, et al. Outcomes of nonsurgical management of locally advanced carcinomas of the sinonasal cavity. Laryngoscope. 2017;127:855–61.CrossRef
3.
go back to reference Robin TP, Jones BL, Gordon OM, Phan A, Abbott D, McDermott JD, et al. A comprehensive comparative analysis of treatment modalities for sinonasal malignancies. Cancer. 2017;123:3040–9.CrossRef Robin TP, Jones BL, Gordon OM, Phan A, Abbott D, McDermott JD, et al. A comprehensive comparative analysis of treatment modalities for sinonasal malignancies. Cancer. 2017;123:3040–9.CrossRef
4.
go back to reference Hoppe BS, Stegman LD, Zelefsky MJ, Rosenzweig KE, Wolden SL, Patel SG, et al. Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting--the MSKCC experience. Int J Radiat Oncol Biol Phys. 2007;67:691–702.CrossRef Hoppe BS, Stegman LD, Zelefsky MJ, Rosenzweig KE, Wolden SL, Patel SG, et al. Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting--the MSKCC experience. Int J Radiat Oncol Biol Phys. 2007;67:691–702.CrossRef
5.
go back to reference Jansen EPM, Keus RB, Hilgers FJM, Haas RLM, Tan IB, Bartelink H. Does the combination of radiotherapy and debulking surgery favor survival in paranasal sinus carcinoma? Int J Radiat Oncol. 2000;48:27–35.CrossRef Jansen EPM, Keus RB, Hilgers FJM, Haas RLM, Tan IB, Bartelink H. Does the combination of radiotherapy and debulking surgery favor survival in paranasal sinus carcinoma? Int J Radiat Oncol. 2000;48:27–35.CrossRef
6.
go back to reference Blanco AI, Chao KSC, Ozyigit G, Adli M, Thorstad WL, Simpson JR, et al. Carcinoma of paranasal sinuses: long-term outcomes with radiotherapy. Int J Radiat Oncol. 2004;59:51–8.CrossRef Blanco AI, Chao KSC, Ozyigit G, Adli M, Thorstad WL, Simpson JR, et al. Carcinoma of paranasal sinuses: long-term outcomes with radiotherapy. Int J Radiat Oncol. 2004;59:51–8.CrossRef
7.
go back to reference Patel SH, Wang Z, Wong WW, Murad MH, Buckey CR, Mohammed K, et al. Charged particle therapy versus photon therapy for paranasal sinus and nasal cavity malignant diseases: a systematic review and meta-analysis. Lancet Oncol. 2014;15:1027–38.CrossRef Patel SH, Wang Z, Wong WW, Murad MH, Buckey CR, Mohammed K, et al. Charged particle therapy versus photon therapy for paranasal sinus and nasal cavity malignant diseases: a systematic review and meta-analysis. Lancet Oncol. 2014;15:1027–38.CrossRef
8.
go back to reference Fukumitsu N, Okumura T, Mizumoto M, Oshiro Y, Hashimoto T, Kanemoto A, et al. Outcome of T4 (International Union Against Cancer Staging System, 7th edition) or recurrent nasal cavity and paranasal sinus carcinoma treated with proton beam. Int J Radiat Oncol Biol Phys. 2012;83:704–11.CrossRef Fukumitsu N, Okumura T, Mizumoto M, Oshiro Y, Hashimoto T, Kanemoto A, et al. Outcome of T4 (International Union Against Cancer Staging System, 7th edition) or recurrent nasal cavity and paranasal sinus carcinoma treated with proton beam. Int J Radiat Oncol Biol Phys. 2012;83:704–11.CrossRef
9.
go back to reference Dowdell SJ, Clasie B, Depauw N, Metcalfe P, Rosenfeld AB, Kooy HM, et al. Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy. Phys Med Biol. 2012;57:2829–42.CrossRef Dowdell SJ, Clasie B, Depauw N, Metcalfe P, Rosenfeld AB, Kooy HM, et al. Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy. Phys Med Biol. 2012;57:2829–42.CrossRef
10.
go back to reference Bues M, Newhauser WD, Titt U, Smith AR. Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: a Monte Carlo study. Radiat Prot Dosim. 2005;115:164–9.CrossRef Bues M, Newhauser WD, Titt U, Smith AR. Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: a Monte Carlo study. Radiat Prot Dosim. 2005;115:164–9.CrossRef
11.
go back to reference Winterhalter C, Meier G, Oxley D, Weber DC, Lomax AJ, Safai S. Contour scanning, multi-leaf collimation and the combination thereof for proton pencil beam scanning. Phys Med Biol. 2019;64:015002.CrossRef Winterhalter C, Meier G, Oxley D, Weber DC, Lomax AJ, Safai S. Contour scanning, multi-leaf collimation and the combination thereof for proton pencil beam scanning. Phys Med Biol. 2019;64:015002.CrossRef
12.
go back to reference Moignier A, Gelover E, Wang D, Smith B, Flynn R, Kirk M, et al. Theoretical benefits of dynamic collimation in pencil beam scanning proton therapy for brain tumors: Dosimetric and radiobiological metrics. Int J Radiat Oncol. 2016;95:171–80.CrossRef Moignier A, Gelover E, Wang D, Smith B, Flynn R, Kirk M, et al. Theoretical benefits of dynamic collimation in pencil beam scanning proton therapy for brain tumors: Dosimetric and radiobiological metrics. Int J Radiat Oncol. 2016;95:171–80.CrossRef
13.
go back to reference Yasui K, Toshito T, Omachi C, Hayashi K, Tanaka K, Asai K, et al. Evaluation of dosimetric advantages of using patient-specific aperture system with intensity-modulated proton therapy for the shallow depth tumor. J Appl Clin Med Phys. 2018;19:132–7.CrossRef Yasui K, Toshito T, Omachi C, Hayashi K, Tanaka K, Asai K, et al. Evaluation of dosimetric advantages of using patient-specific aperture system with intensity-modulated proton therapy for the shallow depth tumor. J Appl Clin Med Phys. 2018;19:132–7.CrossRef
14.
go back to reference Brouwer CL, Steenbakkers RJHM, Bourhis J, Budach W, Grau C, Grégoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117:83–90.CrossRef Brouwer CL, Steenbakkers RJHM, Bourhis J, Budach W, Grau C, Grégoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117:83–90.CrossRef
15.
go back to reference Pacholke HD, Amdur RJ, Schmalfuss IM, Louis D, Mendenhall WM. Contouring the middle and inner ear on radiotherapy planning scans. Am J Clin Oncol. 2005;28:143–7.CrossRef Pacholke HD, Amdur RJ, Schmalfuss IM, Louis D, Mendenhall WM. Contouring the middle and inner ear on radiotherapy planning scans. Am J Clin Oncol. 2005;28:143–7.CrossRef
16.
go back to reference Yock AD, Mohan R, Flampouri S, Bosch W, Taylor PA, Gladstone D, et al. Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol. 2019;9:200–7.CrossRef Yock AD, Mohan R, Flampouri S, Bosch W, Taylor PA, Gladstone D, et al. Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol. 2019;9:200–7.CrossRef
17.
go back to reference Steneker M, Lomax A, Schneider U. Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiother Oncol. 2006;80:263–7.CrossRef Steneker M, Lomax A, Schneider U. Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiother Oncol. 2006;80:263–7.CrossRef
18.
go back to reference Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F, et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114:230–8.CrossRef Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F, et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114:230–8.CrossRef
19.
go back to reference Imola MJ, Schramm VL. Orbital preservation in surgical management of sinonasal malignancy. Laryngoscope. 2002;112:1357–65.CrossRef Imola MJ, Schramm VL. Orbital preservation in surgical management of sinonasal malignancy. Laryngoscope. 2002;112:1357–65.CrossRef
20.
go back to reference Saito T, Ishikawa H, Ohnishi K, Aihara T, Mizumoto M, Fukumitsu N, et al. Proton beam therapy for locally advanced and unresectable (T4bN0M0) squamous cell carcinoma of the ethmoid sinus: a report of seven cases and a literature review. Oncol Lett. 2015;10:201–5.CrossRef Saito T, Ishikawa H, Ohnishi K, Aihara T, Mizumoto M, Fukumitsu N, et al. Proton beam therapy for locally advanced and unresectable (T4bN0M0) squamous cell carcinoma of the ethmoid sinus: a report of seven cases and a literature review. Oncol Lett. 2015;10:201–5.CrossRef
21.
go back to reference Charlwood FC, Aitkenhead AH, Mackay RI. A Monte Carlo study on the collimation of pencil beam scanning proton therapy beams. Med Phys. 2016;43:1462–72.CrossRef Charlwood FC, Aitkenhead AH, Mackay RI. A Monte Carlo study on the collimation of pencil beam scanning proton therapy beams. Med Phys. 2016;43:1462–72.CrossRef
22.
go back to reference Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Severe dry-eye syndrome following external beam irradiation. Int J Radiat Oncol. 1994;30:775–80.CrossRef Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Severe dry-eye syndrome following external beam irradiation. Int J Radiat Oncol. 1994;30:775–80.CrossRef
23.
go back to reference Durkin SR, Roos D, Higgs B, Casson RJ, Selva D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2006;85:240–50.CrossRef Durkin SR, Roos D, Higgs B, Casson RJ, Selva D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2006;85:240–50.CrossRef
24.
go back to reference Moteabbed M, Yock TI, Depauw N, Madden TM, Kooy HM, Paganetti H. Impact of spot size and beam-shaping devices on the treatment plan quality for pencil beam scanning proton therapy. Int J Radiat Oncol. 2016;95:190–8.CrossRef Moteabbed M, Yock TI, Depauw N, Madden TM, Kooy HM, Paganetti H. Impact of spot size and beam-shaping devices on the treatment plan quality for pencil beam scanning proton therapy. Int J Radiat Oncol. 2016;95:190–8.CrossRef
25.
go back to reference Hyer DE, Hill PM, Wang D, Smith BR, Flynn RT. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: proof of concept. Med Phys. 2014;41:091701.CrossRef Hyer DE, Hill PM, Wang D, Smith BR, Flynn RT. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: proof of concept. Med Phys. 2014;41:091701.CrossRef
26.
go back to reference Smith B, Gelover E, Moignier A, Wang D, Flynn RT, Lin L, et al. Technical note: a treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment. Med Phys. 2016;43:4693–9.CrossRef Smith B, Gelover E, Moignier A, Wang D, Flynn RT, Lin L, et al. Technical note: a treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment. Med Phys. 2016;43:4693–9.CrossRef
Metadata
Title
Dose distribution of intensity-modulated proton therapy with and without a multi-leaf collimator for the treatment of maxillary sinus cancer: a comparative effectiveness study
Authors
Soichi Sugiyama
Kuniaki Katsui
Yuki Tominaga
Takahiro Waki
Norihisa Katayama
Hidenobu Matsuzaki
Shin Kariya
Masahiro Kuroda
Kazunori Nishizaki
Susumu Kanazawa
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1405-y

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue