Skip to main content
Top
Published in: Brain Structure and Function 2/2017

01-03-2017 | Short Communication

Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report

Authors: Manuel R. Mercier, Sophie Schwartz, Laurent Spinelli, Christoph M. Michel, Olaf Blanke

Published in: Brain Structure and Function | Issue 2/2017

Login to get access

Abstract

The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient’s FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.
Literature
go back to reference Andersen RA, Bradley DC (1998) Perception of three-dimensional structure from motion. Trends Cogn Sci 2(6):222–228CrossRefPubMed Andersen RA, Bradley DC (1998) Perception of three-dimensional structure from motion. Trends Cogn Sci 2(6):222–228CrossRefPubMed
go back to reference Blanke O, Brooks A, Mercier M, Spinelli L, Adriani M, Lavanchy L, Safran AB, Landis T (2007) Distinct mechanisms of form-from-motion perception in human extrastriate cortex. Neuropsychologia 45(4):644–653CrossRefPubMed Blanke O, Brooks A, Mercier M, Spinelli L, Adriani M, Lavanchy L, Safran AB, Landis T (2007) Distinct mechanisms of form-from-motion perception in human extrastriate cortex. Neuropsychologia 45(4):644–653CrossRefPubMed
go back to reference Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Turner R (2000) Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr Biol 10(12):731–734CrossRefPubMed Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Turner R (2000) Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr Biol 10(12):731–734CrossRefPubMed
go back to reference Cowey A, Vaina LM (2000) Blindness to form from motion despite intact static form perception and motion detection. Neuropsychologia 38(5):566–578CrossRefPubMed Cowey A, Vaina LM (2000) Blindness to form from motion despite intact static form perception and motion detection. Neuropsychologia 38(5):566–578CrossRefPubMed
go back to reference de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S (1994) The cerebral activity related to the visual perception of forward motion in depth. Brain 117(Pt 5):1039–1054CrossRefPubMed de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S (1994) The cerebral activity related to the visual perception of forward motion in depth. Brain 117(Pt 5):1039–1054CrossRefPubMed
go back to reference Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21(13):4809–4821PubMed Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21(13):4809–4821PubMed
go back to reference Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72(3):1420–1424PubMed Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72(3):1420–1424PubMed
go back to reference Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7(3):283–292CrossRefPubMed Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7(3):283–292CrossRefPubMed
go back to reference Ferber S, Humphrey GK, Vilis T (2003) The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. Cereb Cortex 13(7):716–721CrossRefPubMed Ferber S, Humphrey GK, Vilis T (2003) The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. Cereb Cortex 13(7):716–721CrossRefPubMed
go back to reference Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41(13):1717–1727CrossRefPubMed Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41(13):1717–1727CrossRefPubMed
go back to reference Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573CrossRefPubMed Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573CrossRefPubMed
go back to reference Gonzalez Andino SL, de Peralta Grave, Menendez R, Lantz CM, Blank O, Michel CM, Landis T (2001) Non-stationary distributed source approximation: an alternative to improve localization procedures. Hum Brain Mapp 14(2):81–95CrossRefPubMed Gonzalez Andino SL, de Peralta Grave, Menendez R, Lantz CM, Blank O, Michel CM, Landis T (2001) Non-stationary distributed source approximation: an alternative to improve localization procedures. Hum Brain Mapp 14(2):81–95CrossRefPubMed
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25CrossRefPubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25CrossRefPubMed
go back to reference Grave de Peralta Menendez R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino SL (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21(2):527–539CrossRefPubMed Grave de Peralta Menendez R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino SL (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21(2):527–539CrossRefPubMed
go back to reference Grill-Spector K, Kushnir T, Edelman S, Itzchak Y, Malach R (1998) Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21(1):191–202CrossRefPubMed Grill-Spector K, Kushnir T, Edelman S, Itzchak Y, Malach R (1998) Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21(1):191–202CrossRefPubMed
go back to reference Grunewald A, Bradley DC, Andersen RA (2002) Neural correlates of structure-from-motion perception in macaque V1 and MT. J Neurosci 22(14):6195–6207PubMed Grunewald A, Bradley DC, Andersen RA (2002) Neural correlates of structure-from-motion perception in macaque V1 and MT. J Neurosci 22(14):6195–6207PubMed
go back to reference Gulyas B, Heywood CA, Popplewell DA, Roland PE, Cowey A (1994) Visual form discrimination from color or motion cues: functional anatomy by positron emission tomography. Proc Natl Acad Sci USA 91(21):9965–9969CrossRefPubMedPubMedCentral Gulyas B, Heywood CA, Popplewell DA, Roland PE, Cowey A (1994) Visual form discrimination from color or motion cues: functional anatomy by positron emission tomography. Proc Natl Acad Sci USA 91(21):9965–9969CrossRefPubMedPubMedCentral
go back to reference Kuba M, Kubova Z, Kremlacek J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47(2):189–202CrossRefPubMed Kuba M, Kubova Z, Kremlacek J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47(2):189–202CrossRefPubMed
go back to reference Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67(3):271–288CrossRefPubMed Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67(3):271–288CrossRefPubMed
go back to reference Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139CrossRefPubMedPubMedCentral Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139CrossRefPubMedPubMedCentral
go back to reference Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M (1999) Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 16(3):239–266CrossRefPubMed Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M (1999) Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 16(3):239–266CrossRefPubMed
go back to reference Michel CM, Thut G, Morand S, Khateb A, Pegna AJ, Grave de Peralta R, Gonzalez S, Seeck M, Landis T (2001) Electric source imaging of human brain functions. Brain Res Brain Res Rev 36(2–3):108–118CrossRefPubMed Michel CM, Thut G, Morand S, Khateb A, Pegna AJ, Grave de Peralta R, Gonzalez S, Seeck M, Landis T (2001) Electric source imaging of human brain functions. Brain Res Brain Res Rev 36(2–3):108–118CrossRefPubMed
go back to reference Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77CrossRefPubMed Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77CrossRefPubMed
go back to reference Murray SO, Olshausen BA, Woods DL (2003) Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cereb Cortex 13(5):508–516CrossRefPubMed Murray SO, Olshausen BA, Woods DL (2003) Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cereb Cortex 13(5):508–516CrossRefPubMed
go back to reference Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264CrossRefPubMed Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264CrossRefPubMed
go back to reference Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Brain Res Cogn Brain Res 8(2):95–105CrossRefPubMed Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Brain Res Cogn Brain Res 8(2):95–105CrossRefPubMed
go back to reference Orban GA, Sunaert S, Todd JT, Van Hecke P, Marchal G (1999) Human cortical regions involved in extracting depth from motion. Neuron 24(4):929–940CrossRefPubMed Orban GA, Sunaert S, Todd JT, Van Hecke P, Marchal G (1999) Human cortical regions involved in extracting depth from motion. Neuron 24(4):929–940CrossRefPubMed
go back to reference Paradis AL, Cornilleau-Peres V, Droulez J, Van De Moortele PF, Lobel E, Berthoz A, Le Bihan D, Poline JB (2000) Visual perception of motion and 3-D structure from motion: an fMRI study. Cereb Cortex 10(8):772–783CrossRefPubMed Paradis AL, Cornilleau-Peres V, Droulez J, Van De Moortele PF, Lobel E, Berthoz A, Le Bihan D, Poline JB (2000) Visual perception of motion and 3-D structure from motion: an fMRI study. Cereb Cortex 10(8):772–783CrossRefPubMed
go back to reference Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42(7):658–665CrossRefPubMed Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42(7):658–665CrossRefPubMed
go back to reference Regan D, Giaschi D, Sharpe JA, Hong XH (1992) Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions. J Neurosci 12(6):2198–2210PubMed Regan D, Giaschi D, Sharpe JA, Hong XH (1992) Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions. J Neurosci 12(6):2198–2210PubMed
go back to reference Schenk T, Zihl J (1997) Visual motion perception after brain damage: II. Deficits in form-from-motion perception. Neuropsychologia 35(9):1299–1310CrossRefPubMed Schenk T, Zihl J (1997) Visual motion perception after brain damage: II. Deficits in form-from-motion perception. Neuropsychologia 35(9):1299–1310CrossRefPubMed
go back to reference Spinelli L, Andino SG, Lantz G, Seeck M, Michel CM (2000) Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr 13(2):115–125CrossRefPubMed Spinelli L, Andino SG, Lantz G, Seeck M, Michel CM (2000) Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr 13(2):115–125CrossRefPubMed
go back to reference Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127(4):355–370CrossRefPubMed Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127(4):355–370CrossRefPubMed
go back to reference Tononi G, Sporns O, Edelman GM (1992) Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex 2(4):310–335CrossRefPubMed Tononi G, Sporns O, Edelman GM (1992) Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex 2(4):310–335CrossRefPubMed
go back to reference Tootell RB, Taylor JB (1995) Anatomical evidence for MT and additional cortical visual areas in humans. Cereb Cortex 5(1):39–55CrossRefPubMed Tootell RB, Taylor JB (1995) Anatomical evidence for MT and additional cortical visual areas in humans. Cereb Cortex 5(1):39–55CrossRefPubMed
go back to reference Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15(4):3215–3230PubMed Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15(4):3215–3230PubMed
go back to reference Tootell RB, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 19(11):481–489CrossRefPubMed Tootell RB, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 19(11):481–489CrossRefPubMed
go back to reference Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4(2):157–165CrossRefPubMed Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4(2):157–165CrossRefPubMed
go back to reference Vaina LM (1989) Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biol Cybern 61(5):347–359CrossRefPubMed Vaina LM (1989) Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biol Cybern 61(5):347–359CrossRefPubMed
go back to reference Vaina LM, Soloviev S, Bienfang DC, Cowey A (2000) A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion. Neuroreport 11(5):1039–1044CrossRefPubMed Vaina LM, Soloviev S, Bienfang DC, Cowey A (2000) A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion. Neuroreport 11(5):1039–1044CrossRefPubMed
go back to reference Vaina LM, Sikoglu EM, Soloviev S, LeMay M, Squatrito S, Pandiani G, Cowey A (2010) Functional and anatomical profile of visual motion impairments in stroke patients correlate with fMRI in normal subjects. J Neuropsychol 4(Pt 2):121–145. doi:10.1348/174866409X471760 CrossRefPubMed Vaina LM, Sikoglu EM, Soloviev S, LeMay M, Squatrito S, Pandiani G, Cowey A (2010) Functional and anatomical profile of visual motion impairments in stroke patients correlate with fMRI in normal subjects. J Neuropsychol 4(Pt 2):121–145. doi:10.​1348/​174866409X471760​ CrossRefPubMed
go back to reference Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3(2):79–94CrossRefPubMed Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3(2):79–94CrossRefPubMed
Metadata
Title
Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report
Authors
Manuel R. Mercier
Sophie Schwartz
Laurent Spinelli
Christoph M. Michel
Olaf Blanke
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1245-6

Other articles of this Issue 2/2017

Brain Structure and Function 2/2017 Go to the issue