Skip to main content
Top
Published in: Translational Neurodegeneration 1/2018

Open Access 01-12-2018 | Research

Dopaminergic neurons show increased low-molecular-mass protein 7 activity induced by 6-hydroxydopamine in vitro and in vivo

Authors: Ming-Shu Mo, Gui-Hua Li, Cong-Cong Sun, Shu-Xuan Huang, Lei Wei, Li-Min Zhang, Miao-Miao Zhou, Zhuo-Hua Wu, Wen-Yuan Guo, Xin-Ling Yang, Chao-Jun Chen, Shao-Gang Qu, Jian-Xing He, Ping-Yi Xu

Published in: Translational Neurodegeneration | Issue 1/2018

Login to get access

Abstract

Background

Abnormal expression of major histocompatibility complex class I (MHC-I) is increased in dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson’s disease (PD). Low-molecular-mass protein 7 (β5i) is a proteolytic subunit of the immunoproteasome that regulates protein degradation and the MHC pathway in immune cells.

Methods

In this study, we investigated the role of β5i in DA neurons using a 6-hydroxydopamine (6-OHDA) model in vitro and vivo.

Results

We showed that 6-OHDA upregulated β5i expression in DA neurons in a concentration- and time-dependent manner. Inhibition and downregulation of β5i induced the expression of glucose-regulated protein (Bip) and exacerbated 6-OHDA neurotoxicity in DA neurons. The inhibition of β5i further promoted the activation of Caspase 3-related pathways induced by 6-OHDA. β5i also activated transporter associated with antigen processing 1 (TAP1) and promoted MHC-I expression on DA neurons.

Conclusion

Taken together, our data suggest that β5i is activated in DA neurons under 6-OHDA treatment and may play a neuroprotective role in PD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chu Y, Kordower JH. Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease? Neurobiol Dis. 2007;25(1):134–49.CrossRefPubMed Chu Y, Kordower JH. Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease? Neurobiol Dis. 2007;25(1):134–49.CrossRefPubMed
2.
go back to reference Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int. 2013;62(5):803–19.CrossRefPubMed Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int. 2013;62(5):803–19.CrossRefPubMed
3.
go back to reference Launay N, Ruiz M, Fourcade S, Schlüter A, Guilera C, Ferrer I, et al. Oxidative stress regulates the ubiquitin–proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain. 2013;136(3):891–904.CrossRefPubMed Launay N, Ruiz M, Fourcade S, Schlüter A, Guilera C, Ferrer I, et al. Oxidative stress regulates the ubiquitin–proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain. 2013;136(3):891–904.CrossRefPubMed
4.
go back to reference Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001;292(5521):1552–5.CrossRefPubMed Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001;292(5521):1552–5.CrossRefPubMed
5.
go back to reference Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 2006;3(4):255–61.PubMed Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 2006;3(4):255–61.PubMed
6.
go back to reference Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.CrossRefPubMed Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.CrossRefPubMed
7.
go back to reference Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170–85.CrossRefPubMed Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170–85.CrossRefPubMed
8.
go back to reference Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell. 2010;142(4):613–24.CrossRefPubMed Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell. 2010;142(4):613–24.CrossRefPubMed
9.
go back to reference Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E, Delgado JC, et al. Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat Immunol. 2012;13(2):129–35.CrossRef Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E, Delgado JC, et al. Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat Immunol. 2012;13(2):129–35.CrossRef
10.
go back to reference Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, et al. Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ. 2016;23(6):1026.CrossRefPubMedPubMedCentral Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, et al. Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ. 2016;23(6):1026.CrossRefPubMedPubMedCentral
11.
go back to reference Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;5(5):5659. Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;5(5):5659.
12.
go back to reference Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, et al. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiol Aging. 2006;27(1):54–66.CrossRefPubMed Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, et al. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiol Aging. 2006;27(1):54–66.CrossRefPubMed
13.
go back to reference Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, et al. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 2013;136(5):1415–31.CrossRefPubMed Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, et al. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 2013;136(5):1415–31.CrossRefPubMed
14.
go back to reference Díaz-Hernández M, Martín-Aparicio E, Avila J, Hernández F, Lucas JJ. Enhaced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. Neurotox Res. 2004;6(6):463–8.CrossRefPubMed Díaz-Hernández M, Martín-Aparicio E, Avila J, Hernández F, Lucas JJ. Enhaced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. Neurotox Res. 2004;6(6):463–8.CrossRefPubMed
15.
go back to reference Mishto M, Raza ML, de Biase D, Ravizza T, Vasuri F, Martucci M, et al. The immunoproteasome β5i subunit is a key contributor to ictogenesis in a rat model of chronic epilepsy. Brain Behav Immun. 2015;49:188–96.CrossRefPubMed Mishto M, Raza ML, de Biase D, Ravizza T, Vasuri F, Martucci M, et al. The immunoproteasome β5i subunit is a key contributor to ictogenesis in a rat model of chronic epilepsy. Brain Behav Immun. 2015;49:188–96.CrossRefPubMed
16.
go back to reference Chen X, Zhang X, Wang Y, Lei H, Su H, Zeng J, et al. Inhibition of immunoproteasome reduces infarction volume and attenuates inflammatory reaction in a rat model of ischemic stroke. Cell Death Dis. 2015;6(1):e1626.CrossRefPubMedPubMedCentral Chen X, Zhang X, Wang Y, Lei H, Su H, Zeng J, et al. Inhibition of immunoproteasome reduces infarction volume and attenuates inflammatory reaction in a rat model of ischemic stroke. Cell Death Dis. 2015;6(1):e1626.CrossRefPubMedPubMedCentral
17.
go back to reference Bukhatwa S, Zeng B-Y, Rose S, Jenner P. A comparison of changes in proteasomal subunit expression in the substantia nigra in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Brain Res. 2010;1326:174–83.CrossRefPubMed Bukhatwa S, Zeng B-Y, Rose S, Jenner P. A comparison of changes in proteasomal subunit expression in the substantia nigra in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Brain Res. 2010;1326:174–83.CrossRefPubMed
18.
go back to reference Nardo G, Trolese MC, Bendotti C. Major histocompatibility complex I expression by motor neurons and its implication in amyotrophic lateral sclerosis. Front Neurol. 2016;7:89.CrossRefPubMedPubMedCentral Nardo G, Trolese MC, Bendotti C. Major histocompatibility complex I expression by motor neurons and its implication in amyotrophic lateral sclerosis. Front Neurol. 2016;7:89.CrossRefPubMedPubMedCentral
19.
go back to reference Cebrián C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633.CrossRefPubMedPubMedCentral Cebrián C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633.CrossRefPubMedPubMedCentral
20.
go back to reference Huang L, Xue Y, Feng DY, Yang RX, Nie T, Zhu G, et al. Blockade of RyRs in the ER attenuates 6-OHDA-induced calcium overload, Cellular Hypo-Excitability and Apoptosis in Dopaminergic Neurons. Frontiers in Cellular Neuroscience. 2017;11:52.PubMedPubMedCentral Huang L, Xue Y, Feng DY, Yang RX, Nie T, Zhu G, et al. Blockade of RyRs in the ER attenuates 6-OHDA-induced calcium overload, Cellular Hypo-Excitability and Apoptosis in Dopaminergic Neurons. Frontiers in Cellular Neuroscience. 2017;11:52.PubMedPubMedCentral
21.
go back to reference Zhang S, Gui X-H, Huang L-P, Deng M-Z, Fang R-M, Ke X-H, et al. Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1 pathway. Mol Neurobiol. 2016;53(1):83–94.CrossRefPubMed Zhang S, Gui X-H, Huang L-P, Deng M-Z, Fang R-M, Ke X-H, et al. Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1 pathway. Mol Neurobiol. 2016;53(1):83–94.CrossRefPubMed
22.
go back to reference Nijholt DA, De Kimpe L, Elfrink HL, Hoozemans JJ, Scheper W, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med. 2009;15(7):781–7.CrossRef Nijholt DA, De Kimpe L, Elfrink HL, Hoozemans JJ, Scheper W, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med. 2009;15(7):781–7.CrossRef
23.
go back to reference Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand. 1971;82(S367):69–93.CrossRef Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand. 1971;82(S367):69–93.CrossRef
24.
go back to reference Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, et al. Endorepellin, the Angiostatic module of Perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor Receptor 2 (VEGFR2) a DUAL RECEPTOR ANTAGONISM. J Biol Chem. 2011;286(29):25947–62.CrossRefPubMedPubMedCentral Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, et al. Endorepellin, the Angiostatic module of Perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor Receptor 2 (VEGFR2) a DUAL RECEPTOR ANTAGONISM. J Biol Chem. 2011;286(29):25947–62.CrossRefPubMedPubMedCentral
25.
go back to reference Hwang L-Y, Lieu PT, Peterson PA, Yang Y. Functional regulation of immunoproteasomes and transporter associated with antigen processing. Immunol Res. 2001;24(3):245–72.CrossRefPubMed Hwang L-Y, Lieu PT, Peterson PA, Yang Y. Functional regulation of immunoproteasomes and transporter associated with antigen processing. Immunol Res. 2001;24(3):245–72.CrossRefPubMed
26.
go back to reference Kummari E, Guo-Ross SX, Eells JB. Laser capture microdissection-a demonstration of the isolation of individual dopamine neurons and the entire ventral tegmental area. J Vi. Exp. 2015;96(96):e52336–e52336. Kummari E, Guo-Ross SX, Eells JB. Laser capture microdissection-a demonstration of the isolation of individual dopamine neurons and the entire ventral tegmental area. J Vi. Exp. 2015;96(96):e52336–e52336.
27.
go back to reference Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol. 1999;154(1):61–6.CrossRefPubMedPubMedCentral Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol. 1999;154(1):61–6.CrossRefPubMedPubMedCentral
28.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–8.CrossRefPubMed
29.
go back to reference Wang T, Yuan Y, Zou H, Yang J, Zhao S, Ma Y, et al. The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence. Sci Rep. 2016;6:38091.CrossRefPubMedPubMedCentral Wang T, Yuan Y, Zou H, Yang J, Zhao S, Ma Y, et al. The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence. Sci Rep. 2016;6:38091.CrossRefPubMedPubMedCentral
30.
go back to reference Lawand M, Abramova A, Manceau V, Springer S, van Endert P. TAP-dependent and-independent peptide import into dendritic cell Phagosomes. J Immunol. 2016;197(9):3454–63.CrossRefPubMed Lawand M, Abramova A, Manceau V, Springer S, van Endert P. TAP-dependent and-independent peptide import into dendritic cell Phagosomes. J Immunol. 2016;197(9):3454–63.CrossRefPubMed
31.
go back to reference Lindå H, Hammarberg H, Piehl F, Khademi M, Olsson T. Expression of MHC class I heavy chain and β2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons. J Neuroimmunol. 1999;101(1):76–86.CrossRefPubMed Lindå H, Hammarberg H, Piehl F, Khademi M, Olsson T. Expression of MHC class I heavy chain and β2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons. J Neuroimmunol. 1999;101(1):76–86.CrossRefPubMed
32.
go back to reference Ferrington DA, Hussong SA, Roehrich H, Kapphahn RJ, Kavanaugh SM, Heuss ND, et al. Immunoproteasome responds to injury in the retina and brain. J Neurochem. 2008;106(1):158–69.CrossRefPubMedPubMedCentral Ferrington DA, Hussong SA, Roehrich H, Kapphahn RJ, Kavanaugh SM, Heuss ND, et al. Immunoproteasome responds to injury in the retina and brain. J Neurochem. 2008;106(1):158–69.CrossRefPubMedPubMedCentral
33.
go back to reference Song S, Miranda CJ, Braun L, Meyer K, Frakes AE, Ferraiuolo L, et al. MHC class I protects motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis (ALS). Nat Med. 2016;22(4):397.CrossRefPubMedPubMedCentral Song S, Miranda CJ, Braun L, Meyer K, Frakes AE, Ferraiuolo L, et al. MHC class I protects motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis (ALS). Nat Med. 2016;22(4):397.CrossRefPubMedPubMedCentral
34.
go back to reference Díaz-Hernández M, Hernández F, Martín-Aparicio E, Gómez-Ramos P, Morán MA, Castaño JG, et al. Neuronal induction of the immunoproteasome in Huntington's disease. J Neurosci. 2003;23(37):11653–61.CrossRefPubMed Díaz-Hernández M, Hernández F, Martín-Aparicio E, Gómez-Ramos P, Morán MA, Castaño JG, et al. Neuronal induction of the immunoproteasome in Huntington's disease. J Neurosci. 2003;23(37):11653–61.CrossRefPubMed
35.
go back to reference Mo M-S, Huang W, Sun C-C, Zhang L-M, Cen L, Xiao Y-S, et al. Association analysis of proteasome subunits and transporter associated with antigen processing on Chinese patients with Parkinson's disease. Chin Med J. 2016;129(9):1053.CrossRefPubMedPubMedCentral Mo M-S, Huang W, Sun C-C, Zhang L-M, Cen L, Xiao Y-S, et al. Association analysis of proteasome subunits and transporter associated with antigen processing on Chinese patients with Parkinson's disease. Chin Med J. 2016;129(9):1053.CrossRefPubMedPubMedCentral
36.
go back to reference Nijholt D, De Kimpe L, Elfrink H L, Hoozemans J JM, Scheper W. Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr Med Chem. 2011;18(16):2459–76.CrossRefPubMed Nijholt D, De Kimpe L, Elfrink H L, Hoozemans J JM, Scheper W. Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr Med Chem. 2011;18(16):2459–76.CrossRefPubMed
37.
go back to reference Brehm A, Krüger E. Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin Immunopathol. 2015: Springer; 2015:323–33. Brehm A, Krüger E. Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin Immunopathol. 2015: Springer; 2015:323–33.
38.
go back to reference Reis J, Hassan F, Guan XQ, Shen J, Monaco JJ, Papasian CJ, et al. The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages. Cell Biochem Biophys. 2011;60(1–2):119–26.CrossRefPubMedPubMedCentral Reis J, Hassan F, Guan XQ, Shen J, Monaco JJ, Papasian CJ, et al. The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages. Cell Biochem Biophys. 2011;60(1–2):119–26.CrossRefPubMedPubMedCentral
39.
go back to reference Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Molecular & Cellular Proteomics. 2011;10(5):R110. 006924.CrossRef Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Molecular & Cellular Proteomics. 2011;10(5):R110. 006924.CrossRef
40.
go back to reference Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, et al. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure. 2002;10(5):609–18.CrossRefPubMed Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, et al. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure. 2002;10(5):609–18.CrossRefPubMed
41.
go back to reference Aso E, Lomoio S, López-González I, Joda L, Carmona M, Fernández-Yagüe N, et al. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer's disease. Brain Pathol. 2012;22(5):636–53.CrossRefPubMed Aso E, Lomoio S, López-González I, Joda L, Carmona M, Fernández-Yagüe N, et al. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer's disease. Brain Pathol. 2012;22(5):636–53.CrossRefPubMed
42.
go back to reference Cheroni C, Marino M, Tortarolo M, Veglianese P, De Biasi S, Fontana E, et al. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis†. Hum Mol Genet. 2009;18(1):82–96.CrossRefPubMed Cheroni C, Marino M, Tortarolo M, Veglianese P, De Biasi S, Fontana E, et al. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis†. Hum Mol Genet. 2009;18(1):82–96.CrossRefPubMed
43.
go back to reference Pickering AM, Koop AL, Teoh CY, et al. The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J. 2010;432(3):585–95.CrossRefPubMedPubMedCentral Pickering AM, Koop AL, Teoh CY, et al. The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J. 2010;432(3):585–95.CrossRefPubMedPubMedCentral
44.
go back to reference Nathan JA, Spinnenhirn V, Schmidtke G, et al. Immuno-and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell. 2013;152(5):1184–94.CrossRefPubMedPubMedCentral Nathan JA, Spinnenhirn V, Schmidtke G, et al. Immuno-and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell. 2013;152(5):1184–94.CrossRefPubMedPubMedCentral
45.
go back to reference Haroon N, Maksymowych WP, Rahman P, Tsui FW, O'Shea FD, Inman RD. Radiographic severity of ankylosing spondylitis is associated with polymorphism of the large multifunctional peptidase 2 gene in the Spondyloarthritis research consortium of Canada cohort. Arthritis Rheum. 2012;64(4):1119–26.CrossRefPubMed Haroon N, Maksymowych WP, Rahman P, Tsui FW, O'Shea FD, Inman RD. Radiographic severity of ankylosing spondylitis is associated with polymorphism of the large multifunctional peptidase 2 gene in the Spondyloarthritis research consortium of Canada cohort. Arthritis Rheum. 2012;64(4):1119–26.CrossRefPubMed
46.
go back to reference Mercado G, Castillo V, Vidal R, Hetz C. ER proteostasis disturbances in Parkinson's disease: novel insights. Front Aging Neurosci. 2015;7:39. Mercado G, Castillo V, Vidal R, Hetz C. ER proteostasis disturbances in Parkinson's disease: novel insights. Front Aging Neurosci. 2015;7:39.
47.
go back to reference Ugunklusek A, Tatham MH, Elkharaz J, Constantinteodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8(1):e2531.CrossRef Ugunklusek A, Tatham MH, Elkharaz J, Constantinteodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8(1):e2531.CrossRef
48.
go back to reference Ebstein F, Kloetzel P-M, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci. 2012;69(15):2543–58.CrossRefPubMed Ebstein F, Kloetzel P-M, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci. 2012;69(15):2543–58.CrossRefPubMed
49.
go back to reference Askanas V, Engel WK. Inclusion-body myositis a myodegenerative conformational disorder associated with Aβ, protein misfolding, and proteasome inhibition. Neurology. 2006;66(1 suppl 1):S39–48.CrossRefPubMed Askanas V, Engel WK. Inclusion-body myositis a myodegenerative conformational disorder associated with Aβ, protein misfolding, and proteasome inhibition. Neurology. 2006;66(1 suppl 1):S39–48.CrossRefPubMed
50.
go back to reference Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci. 2002;22(24):10690–8.CrossRefPubMed Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci. 2002;22(24):10690–8.CrossRefPubMed
51.
go back to reference Tao K, Wang B, Feng D, Zhang W, Lu F, Lai J, et al. Salidroside protects against 6-Hydroxydopamine-induced cytotoxicity by attenuating ER stress. Neurosci Bull. 2016;32(1):61–9.CrossRefPubMedPubMedCentral Tao K, Wang B, Feng D, Zhang W, Lu F, Lai J, et al. Salidroside protects against 6-Hydroxydopamine-induced cytotoxicity by attenuating ER stress. Neurosci Bull. 2016;32(1):61–9.CrossRefPubMedPubMedCentral
52.
go back to reference Basler M, Mundt S, Muchamuel T, Moll C, Jiang J, Groettrup M, et al. Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis. EMBO Mol Med. 2014;6(2):226–38. e201303543PubMedPubMedCentral Basler M, Mundt S, Muchamuel T, Moll C, Jiang J, Groettrup M, et al. Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis. EMBO Mol Med. 2014;6(2):226–38. e201303543PubMedPubMedCentral
53.
go back to reference Shastri N, Nagarajan N, Lind KC, Kanaseki T. Monitoring peptide processing for MHC class I molecules in the endoplasmic reticulum. Curr Opin Immunol. 2014;26:123–7.CrossRefPubMed Shastri N, Nagarajan N, Lind KC, Kanaseki T. Monitoring peptide processing for MHC class I molecules in the endoplasmic reticulum. Curr Opin Immunol. 2014;26:123–7.CrossRefPubMed
54.
go back to reference McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol. 2015;54(2):121–9.CrossRefPubMed McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol. 2015;54(2):121–9.CrossRefPubMed
55.
go back to reference McDermott A, de Jesus AA, Liu Y, Kim P, Jacks J, Sanchez GAM, et al. A case of proteasome-associated auto-inflammatory syndrome with compound heterozygous mutations in PSMB8. J Am Acad Dermatol. 2013;69(1):e29.CrossRefPubMedPubMedCentral McDermott A, de Jesus AA, Liu Y, Kim P, Jacks J, Sanchez GAM, et al. A case of proteasome-associated auto-inflammatory syndrome with compound heterozygous mutations in PSMB8. J Am Acad Dermatol. 2013;69(1):e29.CrossRefPubMedPubMedCentral
56.
go back to reference Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M. The immunoproteasome: a novel drug target for autoimmune diseases. Clin Exp Rheumatol. 2015;33:74–9. Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M. The immunoproteasome: a novel drug target for autoimmune diseases. Clin Exp Rheumatol. 2015;33:74–9.
57.
go back to reference Mangold CA, Masser DR, Stanford DR, Bixler GV, Pisupati A, Giles CB, et al. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci. 2016;72(1):16–29. glv232CrossRefPubMedPubMedCentral Mangold CA, Masser DR, Stanford DR, Bixler GV, Pisupati A, Giles CB, et al. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci. 2016;72(1):16–29. glv232CrossRefPubMedPubMedCentral
58.
go back to reference McGeer P, Itagaki S, Boyes B, McGeer E. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988;38(8):1285.CrossRefPubMed McGeer P, Itagaki S, Boyes B, McGeer E. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988;38(8):1285.CrossRefPubMed
59.
go back to reference Meuth SG, Herrmann AM, Simon OJ, Siffrin V, Melzer N, Bittner S, et al. Cytotoxic CD8+ T cell–neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death. J Neurosci. 2009;29(49):15397–409.CrossRefPubMed Meuth SG, Herrmann AM, Simon OJ, Siffrin V, Melzer N, Bittner S, et al. Cytotoxic CD8+ T cell–neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death. J Neurosci. 2009;29(49):15397–409.CrossRefPubMed
60.
go back to reference Neumann H, Cavalie A, Jenne DE, Wekerle H. Induction of MHC class I genes in neurons. Science. 1995;269(5223):549.CrossRefPubMed Neumann H, Cavalie A, Jenne DE, Wekerle H. Induction of MHC class I genes in neurons. Science. 1995;269(5223):549.CrossRefPubMed
Metadata
Title
Dopaminergic neurons show increased low-molecular-mass protein 7 activity induced by 6-hydroxydopamine in vitro and in vivo
Authors
Ming-Shu Mo
Gui-Hua Li
Cong-Cong Sun
Shu-Xuan Huang
Lei Wei
Li-Min Zhang
Miao-Miao Zhou
Zhuo-Hua Wu
Wen-Yuan Guo
Xin-Ling Yang
Chao-Jun Chen
Shao-Gang Qu
Jian-Xing He
Ping-Yi Xu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2018
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-018-0125-9

Other articles of this Issue 1/2018

Translational Neurodegeneration 1/2018 Go to the issue