Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2010

Open Access 01-12-2010 | Review

Dopamine signals for reward value and risk: basic and recent data

Author: Wolfram Schultz

Published in: Behavioral and Brain Functions | Issue 1/2010

Login to get access

Abstract

Background

Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli.

Methods

The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks.

Results

Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward.

Conclusions

Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wise RA, Rompre P-P: Brain dopamine and reward. Ann Rev Psychol. 1989, 40: 191-225. 10.1146/annurev.ps.40.020189.001203.CrossRef Wise RA, Rompre P-P: Brain dopamine and reward. Ann Rev Psychol. 1989, 40: 191-225. 10.1146/annurev.ps.40.020189.001203.CrossRef
2.
go back to reference Everitt BJ, Robbins TW: Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005, 8: 1481-1489. 10.1038/nn1579.CrossRefPubMed Everitt BJ, Robbins TW: Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005, 8: 1481-1489. 10.1038/nn1579.CrossRefPubMed
3.
go back to reference Bernoulli D: Specimen theoriae novae de mensura sortis. Comentarii Academiae Scientiarum Imperialis Petropolitanae (Papers Imp. Acad. Sci. St. Petersburg). 1738, 5: 175-192. Translated as: Exposition of a new theory on the measurement of risk. Econometrica 1954, 22:23-36 Bernoulli D: Specimen theoriae novae de mensura sortis. Comentarii Academiae Scientiarum Imperialis Petropolitanae (Papers Imp. Acad. Sci. St. Petersburg). 1738, 5: 175-192. Translated as: Exposition of a new theory on the measurement of risk. Econometrica 1954, 22:23-36
4.
go back to reference Rao RPN, Ballard DH: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999, 2: 79-87. 10.1038/4580.CrossRefPubMed Rao RPN, Ballard DH: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999, 2: 79-87. 10.1038/4580.CrossRefPubMed
5.
go back to reference Rescorla RA, Wagner AR: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory. Edited by: Black AH, Prokasy WF. 1972, New York: Appleton Century Crofts, 64-99. Rescorla RA, Wagner AR: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory. Edited by: Black AH, Prokasy WF. 1972, New York: Appleton Century Crofts, 64-99.
6.
go back to reference Sutton RS, Barto AG: Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev. 1981, 88: 135-170. 10.1037/0033-295X.88.2.135.CrossRefPubMed Sutton RS, Barto AG: Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev. 1981, 88: 135-170. 10.1037/0033-295X.88.2.135.CrossRefPubMed
7.
go back to reference Kamin LJ: Selective association and conditioning. Fundamental Issues in Instrumental Learning. Edited by: Mackintosh NJ, Honig WK. 1969, Halifax: Dalhousie University Press, 42-64. Kamin LJ: Selective association and conditioning. Fundamental Issues in Instrumental Learning. Edited by: Mackintosh NJ, Honig WK. 1969, Halifax: Dalhousie University Press, 42-64.
8.
go back to reference Blythe SN, Atherton JF, Bevan MD: Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J Neurophysiol. 2007, 97: 2837-2850. 10.1152/jn.01157.2006.CrossRefPubMed Blythe SN, Atherton JF, Bevan MD: Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J Neurophysiol. 2007, 97: 2837-2850. 10.1152/jn.01157.2006.CrossRefPubMed
9.
go back to reference Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Phillips PEM, Palmiter RD: Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci. 2009, 106: 7281-7288. 10.1073/pnas.0813415106.PubMedCentralCrossRefPubMed Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Phillips PEM, Palmiter RD: Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci. 2009, 106: 7281-7288. 10.1073/pnas.0813415106.PubMedCentralCrossRefPubMed
10.
go back to reference Harnett MT, Bernier BE, Ahn K-C, Morikawa H: Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons. Neuron. 2009, 62: 826-838. 10.1016/j.neuron.2009.05.011.PubMedCentralCrossRefPubMed Harnett MT, Bernier BE, Ahn K-C, Morikawa H: Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons. Neuron. 2009, 62: 826-838. 10.1016/j.neuron.2009.05.011.PubMedCentralCrossRefPubMed
11.
go back to reference Jones S, Bonci A: Synaptic plasticity and drug addiction. Curr Opin Pharmacol. 2005, 5: 20-25. 10.1016/j.coph.2004.08.011.CrossRefPubMed Jones S, Bonci A: Synaptic plasticity and drug addiction. Curr Opin Pharmacol. 2005, 5: 20-25. 10.1016/j.coph.2004.08.011.CrossRefPubMed
12.
go back to reference Kauer JA, Malenka RC: Synaptic plasticity and addiction. Nat Rev Neurosci. 2007, 8: 844-858. 10.1038/nrn2234.CrossRefPubMed Kauer JA, Malenka RC: Synaptic plasticity and addiction. Nat Rev Neurosci. 2007, 8: 844-858. 10.1038/nrn2234.CrossRefPubMed
13.
go back to reference Ljungberg T, Apicella P, Schultz W: Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res. 1991, 586: 337-341. 10.1016/0006-8993(91)90816-E.CrossRef Ljungberg T, Apicella P, Schultz W: Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res. 1991, 586: 337-341. 10.1016/0006-8993(91)90816-E.CrossRef
14.
go back to reference Schultz W, Apicella P, Ljungberg T: Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci. 1993, 13: 900-913.PubMed Schultz W, Apicella P, Ljungberg T: Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci. 1993, 13: 900-913.PubMed
15.
go back to reference Schultz W: Predictive reward signal of dopamine neurons. J Neurophysiol. 1998, 80: 1-27.PubMed Schultz W: Predictive reward signal of dopamine neurons. J Neurophysiol. 1998, 80: 1-27.PubMed
16.
go back to reference Schultz W, Dayan P, Montague RR: A neural substrate of prediction and reward. Science. 1997, 275: 1593-1599. 10.1126/science.275.5306.1593.CrossRefPubMed Schultz W, Dayan P, Montague RR: A neural substrate of prediction and reward. Science. 1997, 275: 1593-1599. 10.1126/science.275.5306.1593.CrossRefPubMed
17.
go back to reference Hollerman JR, Schultz W: Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1998, 1: 304-309. 10.1038/1124.CrossRefPubMed Hollerman JR, Schultz W: Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1998, 1: 304-309. 10.1038/1124.CrossRefPubMed
18.
go back to reference Fiorillo CD, Tobler PN, Schultz W: Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003, 299: 1898-1902. 10.1126/science.1077349.CrossRefPubMed Fiorillo CD, Tobler PN, Schultz W: Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003, 299: 1898-1902. 10.1126/science.1077349.CrossRefPubMed
19.
go back to reference Satoh T, Nakai S, Sato T, Kimura M: Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci. 2003, 23: 9913-9923.PubMed Satoh T, Nakai S, Sato T, Kimura M: Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci. 2003, 23: 9913-9923.PubMed
20.
go back to reference Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H: Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron. 2004, 43: 133-143. 10.1016/j.neuron.2004.06.012.CrossRefPubMed Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H: Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron. 2004, 43: 133-143. 10.1016/j.neuron.2004.06.012.CrossRefPubMed
21.
go back to reference Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O: Dopamine neurons can represent context-dependent prediction error. Neuron. 2004, 41: 269-280. 10.1016/S0896-6273(03)00869-9.CrossRefPubMed Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O: Dopamine neurons can represent context-dependent prediction error. Neuron. 2004, 41: 269-280. 10.1016/S0896-6273(03)00869-9.CrossRefPubMed
22.
go back to reference Bayer HM, Glimcher PW: Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron. 2005, 47: 129-141. 10.1016/j.neuron.2005.05.020.PubMedCentralCrossRefPubMed Bayer HM, Glimcher PW: Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron. 2005, 47: 129-141. 10.1016/j.neuron.2005.05.020.PubMedCentralCrossRefPubMed
23.
go back to reference Tobler PN, Fiorillo CD, Schultz W: Adaptive coding of reward value by dopamine neurons. Science. 2005, 307: 1642-1645. 10.1126/science.1105370.CrossRefPubMed Tobler PN, Fiorillo CD, Schultz W: Adaptive coding of reward value by dopamine neurons. Science. 2005, 307: 1642-1645. 10.1126/science.1105370.CrossRefPubMed
24.
go back to reference Zaghloul KA, Blanco JA, Weidemann CT, McGill K, Jaggi JL, Baltuch GH, Kahana MJ: Human substantia nigra neurons encode unexpected financial rewards. Science. 2009, 323: 1496-1499. 10.1126/science.1167342.PubMedCentralCrossRefPubMed Zaghloul KA, Blanco JA, Weidemann CT, McGill K, Jaggi JL, Baltuch GH, Kahana MJ: Human substantia nigra neurons encode unexpected financial rewards. Science. 2009, 323: 1496-1499. 10.1126/science.1167342.PubMedCentralCrossRefPubMed
25.
go back to reference Fiorillo CD, Newsome WT, Schultz W: The temporal precision of reward prediction in dopamine neurons. Nat Neurosci. 2008, 11: 966-973. 10.1038/nn.2159.CrossRefPubMed Fiorillo CD, Newsome WT, Schultz W: The temporal precision of reward prediction in dopamine neurons. Nat Neurosci. 2008, 11: 966-973. 10.1038/nn.2159.CrossRefPubMed
26.
go back to reference Bayer HM, Lau B, Glimcher PW: Statistics of dopamine neuron spike trains in the awake primate. J Neurophysiol. 2007, 98: 1428-1439. 10.1152/jn.01140.2006.CrossRefPubMed Bayer HM, Lau B, Glimcher PW: Statistics of dopamine neuron spike trains in the awake primate. J Neurophysiol. 2007, 98: 1428-1439. 10.1152/jn.01140.2006.CrossRefPubMed
27.
go back to reference Waelti P, Dickinson A, Schultz W: Dopamine responses comply with basic assumptions of formal learning theory. Nature. 2001, 412: 43-48. 10.1038/35083500.CrossRefPubMed Waelti P, Dickinson A, Schultz W: Dopamine responses comply with basic assumptions of formal learning theory. Nature. 2001, 412: 43-48. 10.1038/35083500.CrossRefPubMed
28.
go back to reference Rescorla RA: Pavlovian conditioned inhibition. Psychol Bull. 1969, 72: 77-94. 10.1037/h0027760.CrossRef Rescorla RA: Pavlovian conditioned inhibition. Psychol Bull. 1969, 72: 77-94. 10.1037/h0027760.CrossRef
29.
go back to reference Tobler PN, Dickinson A, Schultz W: Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci. 2003, 23: 10402-10410.PubMed Tobler PN, Dickinson A, Schultz W: Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci. 2003, 23: 10402-10410.PubMed
30.
go back to reference Preuschoff , Bossaerts P: Adding prediction risk to the theory of reward learning. Ann NY Acad Sci. 2007, 1104: 135-146. 10.1196/annals.1390.005.CrossRefPubMed Preuschoff , Bossaerts P: Adding prediction risk to the theory of reward learning. Ann NY Acad Sci. 2007, 1104: 135-146. 10.1196/annals.1390.005.CrossRefPubMed
31.
go back to reference Romo R, Schultz W: Dopamine neurons of the monkey midbrain: Contingencies of responses to active touch during self-initiated arm movements. J Neurophysiol. 1990, 63: 592-606.PubMed Romo R, Schultz W: Dopamine neurons of the monkey midbrain: Contingencies of responses to active touch during self-initiated arm movements. J Neurophysiol. 1990, 63: 592-606.PubMed
32.
go back to reference Schultz W, Romo R: Dopamine neurons of the monkey midbrain: Contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol. 1990, 63: 607-624.PubMed Schultz W, Romo R: Dopamine neurons of the monkey midbrain: Contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol. 1990, 63: 607-624.PubMed
33.
go back to reference Mirenowicz J, Schultz W: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature. 1996, 379: 449-451. 10.1038/379449a0.CrossRefPubMed Mirenowicz J, Schultz W: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature. 1996, 379: 449-451. 10.1038/379449a0.CrossRefPubMed
34.
go back to reference Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H: Midbrain dopamine neurons encode decisions for future action. Nat Neurosci. 2006, 9: 1057-1063. 10.1038/nn1743.CrossRefPubMed Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H: Midbrain dopamine neurons encode decisions for future action. Nat Neurosci. 2006, 9: 1057-1063. 10.1038/nn1743.CrossRefPubMed
35.
go back to reference Roesch MR, Calu DJ, Schoenbaum G: Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci. 2007, 10: 1615-1624. 10.1038/nn2013.PubMedCentralCrossRefPubMed Roesch MR, Calu DJ, Schoenbaum G: Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci. 2007, 10: 1615-1624. 10.1038/nn2013.PubMedCentralCrossRefPubMed
36.
go back to reference Takikawa Y, Kawagoe R, Hikosaka O: A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward maping. J Neurophysiol. 2004, 92: 2520-2529. 10.1152/jn.00238.2004.CrossRefPubMed Takikawa Y, Kawagoe R, Hikosaka O: A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward maping. J Neurophysiol. 2004, 92: 2520-2529. 10.1152/jn.00238.2004.CrossRefPubMed
37.
go back to reference Pan W-X, Schmidt R, Wickens JR, Hyland BI: Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. J Neurosci. 2005, 25: 6235-6242. 10.1523/JNEUROSCI.1478-05.2005.CrossRefPubMed Pan W-X, Schmidt R, Wickens JR, Hyland BI: Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. J Neurosci. 2005, 25: 6235-6242. 10.1523/JNEUROSCI.1478-05.2005.CrossRefPubMed
38.
go back to reference Montague PR, Dayan P, Sejnowski TJ: A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci. 1996, 16: 1936-1947.PubMed Montague PR, Dayan P, Sejnowski TJ: A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci. 1996, 16: 1936-1947.PubMed
39.
go back to reference Suri R, Schultz W: A neural network with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience. 1999, 91: 871-890. 10.1016/S0306-4522(98)00697-6.CrossRefPubMed Suri R, Schultz W: A neural network with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience. 1999, 91: 871-890. 10.1016/S0306-4522(98)00697-6.CrossRefPubMed
40.
go back to reference Ainslie G: Specious rewards: a behavioral theory of impulsiveness and impulse control. Psych Bull. 1975, 82: 463-496. 10.1037/h0076860.CrossRef Ainslie G: Specious rewards: a behavioral theory of impulsiveness and impulse control. Psych Bull. 1975, 82: 463-496. 10.1037/h0076860.CrossRef
41.
go back to reference Rodriguez ML, Logue AW: Adjusting delay to reinforcement: comparing choice in pigeons and humans. J Exp Psychol Anim Behav Process. 1988, 14: 105-117. 10.1037/0097-7403.14.1.105.CrossRefPubMed Rodriguez ML, Logue AW: Adjusting delay to reinforcement: comparing choice in pigeons and humans. J Exp Psychol Anim Behav Process. 1988, 14: 105-117. 10.1037/0097-7403.14.1.105.CrossRefPubMed
42.
go back to reference Richards JB, Mitchell SH, de Wit H, Seiden LS: Determination of discount functions in rats with an adjusting-amount procedure. J Exp Anal Behav. 1997, 67: 353-366. 10.1901/jeab.1997.67-353.PubMedCentralCrossRefPubMed Richards JB, Mitchell SH, de Wit H, Seiden LS: Determination of discount functions in rats with an adjusting-amount procedure. J Exp Anal Behav. 1997, 67: 353-366. 10.1901/jeab.1997.67-353.PubMedCentralCrossRefPubMed
43.
44.
go back to reference Guarraci FA, Kapp BS: An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav Brain Res. 1999, 99: 169-179. 10.1016/S0166-4328(98)00102-8.CrossRefPubMed Guarraci FA, Kapp BS: An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav Brain Res. 1999, 99: 169-179. 10.1016/S0166-4328(98)00102-8.CrossRefPubMed
45.
go back to reference Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H: Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci. 2008, 28: 1673-11684. 10.1523/JNEUROSCI.3839-08.2008.CrossRef Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H: Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci. 2008, 28: 1673-11684. 10.1523/JNEUROSCI.3839-08.2008.CrossRef
46.
go back to reference Matsumoto M, Hikosaka O: Two types of dopamine neuron distinctively convey positive and negative motivational signals. Nature. 2009, 459: 837-841. 10.1038/nature08028.PubMedCentralCrossRefPubMed Matsumoto M, Hikosaka O: Two types of dopamine neuron distinctively convey positive and negative motivational signals. Nature. 2009, 459: 837-841. 10.1038/nature08028.PubMedCentralCrossRefPubMed
47.
go back to reference Chiodo LA, Antelman SM, Caggiula AR, Lineberry CG: Sensory stimuli alter the discharge rate of dopamine (DA) neurons: Evidence for two functional types of DA cells in the substantia nigra. Brain Res. 1980, 189: 544-549. 10.1016/0006-8993(80)90366-2.CrossRefPubMed Chiodo LA, Antelman SM, Caggiula AR, Lineberry CG: Sensory stimuli alter the discharge rate of dopamine (DA) neurons: Evidence for two functional types of DA cells in the substantia nigra. Brain Res. 1980, 189: 544-549. 10.1016/0006-8993(80)90366-2.CrossRefPubMed
48.
go back to reference Mantz J, Thierry AM, Glowinski J: Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res. 1989, 476: 377-381. 10.1016/0006-8993(89)91263-8.CrossRefPubMed Mantz J, Thierry AM, Glowinski J: Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res. 1989, 476: 377-381. 10.1016/0006-8993(89)91263-8.CrossRefPubMed
49.
go back to reference Schultz W, Romo R: Responses of nigrostriatal dopamine neurons to high intensity somatosensory stimulation in the anesthetized monkey. J Neurophysiol. 1987, 57: 201-217.PubMed Schultz W, Romo R: Responses of nigrostriatal dopamine neurons to high intensity somatosensory stimulation in the anesthetized monkey. J Neurophysiol. 1987, 57: 201-217.PubMed
50.
go back to reference Coizet V, Dommett EJ, Redgrave P, Overton PG: Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience. 2006, 139: 1479-1493. 10.1016/j.neuroscience.2006.01.030.CrossRefPubMed Coizet V, Dommett EJ, Redgrave P, Overton PG: Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience. 2006, 139: 1479-1493. 10.1016/j.neuroscience.2006.01.030.CrossRefPubMed
51.
go back to reference Brown MTC, Henny P, Bolam JP, Magill PJ: Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state. J Neurosci. 2009, 29: 2915-2925. 10.1523/JNEUROSCI.4423-08.2009.PubMedCentralCrossRefPubMed Brown MTC, Henny P, Bolam JP, Magill PJ: Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state. J Neurosci. 2009, 29: 2915-2925. 10.1523/JNEUROSCI.4423-08.2009.PubMedCentralCrossRefPubMed
52.
go back to reference Brischoux F, Chakraborty S, Brierley DI, Ungless MA: Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci USA. 2009, 106: 4894-4899. 10.1073/pnas.0811507106.PubMedCentralCrossRefPubMed Brischoux F, Chakraborty S, Brierley DI, Ungless MA: Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci USA. 2009, 106: 4894-4899. 10.1073/pnas.0811507106.PubMedCentralCrossRefPubMed
53.
go back to reference Day JJ, Roitman MF, Wightman RM, Carelli RM: Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci. 2007, 10: 1020-1028. 10.1038/nn1923.CrossRefPubMed Day JJ, Roitman MF, Wightman RM, Carelli RM: Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci. 2007, 10: 1020-1028. 10.1038/nn1923.CrossRefPubMed
54.
go back to reference Roitman MF, Wheeler RA, Wightman RM, Carelli RM: Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci. 2008, 11: 1376-1377. 10.1038/nn.2219.PubMedCentralCrossRefPubMed Roitman MF, Wheeler RA, Wightman RM, Carelli RM: Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci. 2008, 11: 1376-1377. 10.1038/nn.2219.PubMedCentralCrossRefPubMed
55.
go back to reference Young AMJ: Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J Neurosci Meth. 2004, 138: 57-63. 10.1016/j.jneumeth.2004.03.003.CrossRef Young AMJ: Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J Neurosci Meth. 2004, 138: 57-63. 10.1016/j.jneumeth.2004.03.003.CrossRef
56.
go back to reference Schultz W: Multiple dopamine functions at different time courses. Ann Rev Neurosci. 2007, 30: 259-288. 10.1146/annurev.neuro.28.061604.135722.CrossRefPubMed Schultz W: Multiple dopamine functions at different time courses. Ann Rev Neurosci. 2007, 30: 259-288. 10.1146/annurev.neuro.28.061604.135722.CrossRefPubMed
57.
go back to reference Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009, 324: 1080-1084. 10.1126/science.1168878.CrossRefPubMed Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009, 324: 1080-1084. 10.1126/science.1168878.CrossRefPubMed
58.
go back to reference Strecker RE, Jacobs BL: Substantia nigra dopaminergic unit activity in behaving cats: Effect of arousal on spontaneous discharge and sensory evoked activity. Brain Res. 1985, 361: 339-350. 10.1016/0006-8993(85)91304-6.CrossRefPubMed Strecker RE, Jacobs BL: Substantia nigra dopaminergic unit activity in behaving cats: Effect of arousal on spontaneous discharge and sensory evoked activity. Brain Res. 1985, 361: 339-350. 10.1016/0006-8993(85)91304-6.CrossRefPubMed
59.
go back to reference Ljungberg T, Apicella P, Schultz W: Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol. 1992, 67: 145-163.PubMed Ljungberg T, Apicella P, Schultz W: Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol. 1992, 67: 145-163.PubMed
60.
go back to reference Horvitz JC, Stewart T, Jacobs BL: Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 1997, 759: 251-258. 10.1016/S0006-8993(97)00265-5.CrossRefPubMed Horvitz JC, Stewart T, Jacobs BL: Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 1997, 759: 251-258. 10.1016/S0006-8993(97)00265-5.CrossRefPubMed
61.
go back to reference Sheafor PJ: Pseudoconditioned jaw movements of the rabbit reflect associations conditioned to contextual background cues. J Exp Psychol: Anim Behav Proc. 1975, 104: 245-260. 10.1037/0097-7403.1.3.245. Sheafor PJ: Pseudoconditioned jaw movements of the rabbit reflect associations conditioned to contextual background cues. J Exp Psychol: Anim Behav Proc. 1975, 104: 245-260. 10.1037/0097-7403.1.3.245.
62.
go back to reference Kakade S, Dayan P: Dopamine: generalization and bonuses. Neural Netw. 2002, 15: 549-559. 10.1016/S0893-6080(02)00048-5.CrossRefPubMed Kakade S, Dayan P: Dopamine: generalization and bonuses. Neural Netw. 2002, 15: 549-559. 10.1016/S0893-6080(02)00048-5.CrossRefPubMed
63.
go back to reference Richfield EK, Pennney JB, Young AB: Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989, 30: 767-777. 10.1016/0306-4522(89)90168-1.CrossRefPubMed Richfield EK, Pennney JB, Young AB: Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989, 30: 767-777. 10.1016/0306-4522(89)90168-1.CrossRefPubMed
64.
go back to reference Mackintosh NJ: A theory of attention: Variations in the associability of stimulus with reinforcement. Psychol Rev. 1975, 82: 276-298. 10.1037/h0076778.CrossRef Mackintosh NJ: A theory of attention: Variations in the associability of stimulus with reinforcement. Psychol Rev. 1975, 82: 276-298. 10.1037/h0076778.CrossRef
65.
go back to reference Pearce JM, Hall G: A model for Pavlovian conditioning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev. 1980, 87: 532-552. 10.1037/0033-295X.87.6.532.CrossRefPubMed Pearce JM, Hall G: A model for Pavlovian conditioning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev. 1980, 87: 532-552. 10.1037/0033-295X.87.6.532.CrossRefPubMed
66.
go back to reference Levy H, Markowitz HM: Approximating expected utility by a function of mean and variance. Am Econ Rev. 1979, 69: 308-317. Levy H, Markowitz HM: Approximating expected utility by a function of mean and variance. Am Econ Rev. 1979, 69: 308-317.
Metadata
Title
Dopamine signals for reward value and risk: basic and recent data
Author
Wolfram Schultz
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2010
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-6-24

Other articles of this Issue 1/2010

Behavioral and Brain Functions 1/2010 Go to the issue