Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 5/2013

01-10-2013 | Research Article

Dopamine Modulates Auditory Responses in the Inferior Colliculus in a Heterogeneous Manner

Authors: Joshua X. Gittelman, David J. Perkel, Christine V. Portfors

Published in: Journal of the Association for Research in Otolaryngology | Issue 5/2013

Login to get access

Abstract

Perception of complex sounds such as speech is affected by a variety of factors, including attention, expectation of reward, physiological state, and/or disorders, yet the mechanisms underlying this modulation are not well understood. Although dopamine is commonly studied for its role in reward-based learning and in disorders, multiple lines of evidence suggest that dopamine is also involved in modulating auditory processing. In this study, we examined the effects of dopamine application on neuronal response properties in the inferior colliculus (IC) of awake mice. Because the IC contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase, we predicted that dopamine would modulate auditory responses in the IC. We recorded single-unit responses before, during, and after the iontophoretic application of dopamine using piggyback electrodes. We examined the effects of dopamine on firing rate, timing, and probability of bursting. We found that application of dopamine affected neural responses in a heterogeneous manner. In more than 80 % of the neurons, dopamine either increased (32 %) or decreased (50 %) firing rate, and the effects were similar on spontaneous and sound-evoked activity. Dopamine also either increased or decreased first spike latency and jitter in almost half of the neurons. In 3/28 neurons (11 %), dopamine significantly altered the probability of bursting. The heterogeneous effects of dopamine observed in the IC of awake mice were similar to effects observed in other brain areas. Our findings indicate that dopamine differentially modulates neural activity in the IC and thus may play an important role in auditory processing.
Literature
go back to reference Adams J, Mugnaini E (1984) Dorsal nucleus of the lateral lemniscus: a nucleus of GABAergic projection neurons. Brain Res Bull 13:585–590PubMedCrossRef Adams J, Mugnaini E (1984) Dorsal nucleus of the lateral lemniscus: a nucleus of GABAergic projection neurons. Brain Res Bull 13:585–590PubMedCrossRef
go back to reference Allen PD, Ison JR (2010) Sensitivity of the mouse to changes in azimuthal sound location: angular separation, spectral composition, and sound level. Behav Neurosci 124:265–277PubMedCrossRef Allen PD, Ison JR (2010) Sensitivity of the mouse to changes in azimuthal sound location: angular separation, spectral composition, and sound level. Behav Neurosci 124:265–277PubMedCrossRef
go back to reference Allen PD, Ison JR (2012) Kcna1 gene deletion lowers the behavioral sensitivity of mice to small changes in sound location and increases asynchronous brainstem auditory evoked potentials but does not affect hearing thresholds. J Neurosci 32:2538–2543PubMedCrossRef Allen PD, Ison JR (2012) Kcna1 gene deletion lowers the behavioral sensitivity of mice to small changes in sound location and increases asynchronous brainstem auditory evoked potentials but does not affect hearing thresholds. J Neurosci 32:2538–2543PubMedCrossRef
go back to reference Aragona BJ, Liu Y, Curtis JT, Stephan FK, Wang Z (2003) A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J Neurosci 23:3483–3490PubMed Aragona BJ, Liu Y, Curtis JT, Stephan FK, Wang Z (2003) A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J Neurosci 23:3483–3490PubMed
go back to reference Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–9552PubMedCrossRef Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–9552PubMedCrossRef
go back to reference Bender KJ, Uebele VN, Renger JJ, Trussell LO (2012) Control of firing patterns through modulation of axon initial segment T-type calcium channels. J Physiol 590:109–118PubMed Bender KJ, Uebele VN, Renger JJ, Trussell LO (2012) Control of firing patterns through modulation of axon initial segment T-type calcium channels. J Physiol 590:109–118PubMed
go back to reference Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343PubMedCrossRef Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343PubMedCrossRef
go back to reference Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol 197:705–722PubMedCrossRef Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol 197:705–722PubMedCrossRef
go back to reference Calabresi P, Mercuri NB, Sancesario G, Bernardi G (1993) Electrophysiology of dopamine-denervated striatal neurons. Brain 116:433–452PubMedCrossRef Calabresi P, Mercuri NB, Sancesario G, Bernardi G (1993) Electrophysiology of dopamine-denervated striatal neurons. Brain 116:433–452PubMedCrossRef
go back to reference Charlier TD, Ball GF, Balthazart J (2005) Sexual behavior activates the expression of the immediate early genes c-fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail. Neuroscience 131:13–30PubMedCrossRef Charlier TD, Ball GF, Balthazart J (2005) Sexual behavior activates the expression of the immediate early genes c-fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail. Neuroscience 131:13–30PubMedCrossRef
go back to reference Drescher MJ, Drescher DG, Khan KM, Hatfield JS, Ramakrishnan NA, Abu-Hamdan MD, Lemonnier LA (2006) Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea. Neuroscience 142:139–164PubMedCrossRef Drescher MJ, Drescher DG, Khan KM, Hatfield JS, Ramakrishnan NA, Abu-Hamdan MD, Lemonnier LA (2006) Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea. Neuroscience 142:139–164PubMedCrossRef
go back to reference Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57PubMedCrossRef Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57PubMedCrossRef
go back to reference Frisina D, Walton J, Lynch-Armour M, Klotz D (1998) Inputs to a physiologically characterized region of the inferior colliculus of the young adult CBA mouse. Hear Res 115:61–81PubMedCrossRef Frisina D, Walton J, Lynch-Armour M, Klotz D (1998) Inputs to a physiologically characterized region of the inferior colliculus of the young adult CBA mouse. Hear Res 115:61–81PubMedCrossRef
go back to reference Gáborján A, Lendvai B, Vizi ES (1999) Neurochemical evidence of dopamine release by lateral olivo- cochlear efferents and its presynaptic modulation in guinea-pig cochlea. Neuroscience 90:131–138PubMedCrossRef Gáborján A, Lendvai B, Vizi ES (1999) Neurochemical evidence of dopamine release by lateral olivo- cochlear efferents and its presynaptic modulation in guinea-pig cochlea. Neuroscience 90:131–138PubMedCrossRef
go back to reference Gale SD, Perkel DJ (2010) A basal ganglia pathway drives selective auditory responses in songbird dopaminergic neurons via disinhibition. J Neurosci 30:1027–1037PubMedCrossRef Gale SD, Perkel DJ (2010) A basal ganglia pathway drives selective auditory responses in songbird dopaminergic neurons via disinhibition. J Neurosci 30:1027–1037PubMedCrossRef
go back to reference Gittelman JX, Wang L, Colburn HS, Pollak GD (2012) Inhibition shapes response selectivity in the inferior colliculus by gain modulation. Front Neural Circ 6:67 Gittelman JX, Wang L, Colburn HS, Pollak GD (2012) Inhibition shapes response selectivity in the inferior colliculus by gain modulation. Front Neural Circ 6:67
go back to reference Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B, Perez-Gonzalez H (1996) Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol 372:309–326PubMedCrossRef Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B, Perez-Gonzalez H (1996) Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol 372:309–326PubMedCrossRef
go back to reference Goodson JL, Kabelik D, Kelly AM, Rinaldi J, Klatt JD (2009) Dopamine-beta-hydroxylase and tyrosine hydroxylase immunoreactive neurons in the human brainstem. Proc Natl Acad Sci 106:8737–8742PubMedCrossRef Goodson JL, Kabelik D, Kelly AM, Rinaldi J, Klatt JD (2009) Dopamine-beta-hydroxylase and tyrosine hydroxylase immunoreactive neurons in the human brainstem. Proc Natl Acad Sci 106:8737–8742PubMedCrossRef
go back to reference Govindaiah G, Wang Y, Cox CL (2010) Dopamine enhances the excitability of somatosensory thalamocortical neurons. Neuroscience 170:981–991PubMedCrossRef Govindaiah G, Wang Y, Cox CL (2010) Dopamine enhances the excitability of somatosensory thalamocortical neurons. Neuroscience 170:981–991PubMedCrossRef
go back to reference Havey D, Caspary DM (1980) A simple technique for constructing piggy-back multibarrel micro-electrodes. Electroencephalogr Clin Neurophysiol 45:249–251 Havey D, Caspary DM (1980) A simple technique for constructing piggy-back multibarrel micro-electrodes. Electroencephalogr Clin Neurophysiol 45:249–251
go back to reference Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966PubMedCrossRef Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966PubMedCrossRef
go back to reference Holmstrom L, Eeuwes LB, Roberts PD, Portfors CV (2010) Efficient encoding of vocalizations in the auditory midbrain. J Neurosci 30:802–819PubMedCrossRef Holmstrom L, Eeuwes LB, Roberts PD, Portfors CV (2010) Efficient encoding of vocalizations in the auditory midbrain. J Neurosci 30:802–819PubMedCrossRef
go back to reference Hormigo S, Horta Júnior Jde A, Gómez-Nieto R, López DE (2012) The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats. FrontNeural Circ 6:41 Hormigo S, Horta Júnior Jde A, Gómez-Nieto R, López DE (2012) The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats. FrontNeural Circ 6:41
go back to reference Ison JR, Allen PD (2012) Deficits in responding to brief noise offsets in Kcna1 −/− mice reveal a contribution of this gene to precise temporal processing seen previously only for stimulus onsets. J Assoc Res Otolaryngol 13:351–358PubMedCrossRef Ison JR, Allen PD (2012) Deficits in responding to brief noise offsets in Kcna1 −/− mice reveal a contribution of this gene to precise temporal processing seen previously only for stimulus onsets. J Assoc Res Otolaryngol 13:351–358PubMedCrossRef
go back to reference Khurana S, Remme MW, Rinzel J, Golding NL (2011) Dynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive. J Neurosci 31:8936–8947PubMedCrossRef Khurana S, Remme MW, Rinzel J, Golding NL (2011) Dynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive. J Neurosci 31:8936–8947PubMedCrossRef
go back to reference Kitahama K, Sakamoto N, Jouvet A, Nagatsu I, Pearson J (1996) Dopamine-beta-hydroxylase and tyrosine hydroxylase immunoreactive neurons in the human brainstem. J Chem Neuroanat 10:137–146PubMedCrossRef Kitahama K, Sakamoto N, Jouvet A, Nagatsu I, Pearson J (1996) Dopamine-beta-hydroxylase and tyrosine hydroxylase immunoreactive neurons in the human brainstem. J Chem Neuroanat 10:137–146PubMedCrossRef
go back to reference Koch U, Grothe B (2003) Hyperpolarization-activated current (Ih) in the inferior colliculus: distribution and contribution to temporal processing. J Neurophysiol 90:3679–3687PubMedCrossRef Koch U, Grothe B (2003) Hyperpolarization-activated current (Ih) in the inferior colliculus: distribution and contribution to temporal processing. J Neurophysiol 90:3679–3687PubMedCrossRef
go back to reference Kubikova L, Kostál L (2010) Dopaminergic system in birdsong learning and maintenance. J Chem Anatomy 39:112–123 Kubikova L, Kostál L (2010) Dopaminergic system in birdsong learning and maintenance. J Chem Anatomy 39:112–123
go back to reference Kubikova L, Wada K, Jarvis ED (2010) Dopamine receptors in a songbird brain. J Comp Neurol 518:741–769PubMedCrossRef Kubikova L, Wada K, Jarvis ED (2010) Dopamine receptors in a songbird brain. J Comp Neurol 518:741–769PubMedCrossRef
go back to reference Kulesza RJ, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89:2299–2312PubMedCrossRef Kulesza RJ, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89:2299–2312PubMedCrossRef
go back to reference Leblois A, Wendel BJ, Perkel DJ (2010) Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors. J Neurosci 30:5730–5743PubMedCrossRef Leblois A, Wendel BJ, Perkel DJ (2010) Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors. J Neurosci 30:5730–5743PubMedCrossRef
go back to reference Li L, Korngut LM, Frost BJ, Beninger RJ (1998) Prepulse inhibition following lesions of the inferior colliculus: prepulse intensity functions. Physiol Behav 65:133–139PubMedCrossRef Li L, Korngut LM, Frost BJ, Beninger RJ (1998) Prepulse inhibition following lesions of the inferior colliculus: prepulse intensity functions. Physiol Behav 65:133–139PubMedCrossRef
go back to reference Lobarinas E, Hayes SH, Allman BL (2013) The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 295:150–160PubMedCrossRef Lobarinas E, Hayes SH, Allman BL (2013) The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 295:150–160PubMedCrossRef
go back to reference Maia T, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14:154–162PubMedCrossRef Maia T, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14:154–162PubMedCrossRef
go back to reference Maison SF, Liu XP, Eatock RA, Sibley DR, Grandy DK, Liberman MC (2012) Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 32:344–355PubMedCrossRef Maison SF, Liu XP, Eatock RA, Sibley DR, Grandy DK, Liberman MC (2012) Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 32:344–355PubMedCrossRef
go back to reference Mayko ZM, Roberts PD, Portfors CV (2012) Inhibitory microcircuitry shapes selectivity to vocalizations in the inferior colliculus. Front Neurosci 6:73 Mayko ZM, Roberts PD, Portfors CV (2012) Inhibitory microcircuitry shapes selectivity to vocalizations in the inferior colliculus. Front Neurosci 6:73
go back to reference Metzger RR, Greene NT, Porter KK, Groh JM (2006) Effects of reward and behavioral context on neural activity in the primate inferior colliculus. J Neurosci 26:7468–7476PubMedCrossRef Metzger RR, Greene NT, Porter KK, Groh JM (2006) Effects of reward and behavioral context on neural activity in the primate inferior colliculus. J Neurosci 26:7468–7476PubMedCrossRef
go back to reference Michaeli A, Yaka R (2010) Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic g-protein coupled inwardly-rectifying potassium channels. Neuroscience 165:1159–1169PubMedCrossRef Michaeli A, Yaka R (2010) Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic g-protein coupled inwardly-rectifying potassium channels. Neuroscience 165:1159–1169PubMedCrossRef
go back to reference Muniak MM, Mayko ZM, Ryugo DK, Portfors CV (2012) Preparation of an awake mouse for recording neural responses and injecting tracers. J Vis Exp 64(e3755):1–7 Muniak MM, Mayko ZM, Ryugo DK, Portfors CV (2012) Preparation of an awake mouse for recording neural responses and injecting tracers. J Vis Exp 64(e3755):1–7
go back to reference Nicola SM, Surmeier DJ, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215PubMedCrossRef Nicola SM, Surmeier DJ, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215PubMedCrossRef
go back to reference Orio P, Parra A, Madrid R, Gonzalez O, Belmonte C, Viana F (2012) Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 108:3009–3023PubMedCrossRef Orio P, Parra A, Madrid R, Gonzalez O, Belmonte C, Viana F (2012) Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 108:3009–3023PubMedCrossRef
go back to reference Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego
go back to reference Perez MF, White FJ, Hu XT (2006) Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. J Neurophysiol 96:2217–2228PubMedCrossRef Perez MF, White FJ, Hu XT (2006) Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. J Neurophysiol 96:2217–2228PubMedCrossRef
go back to reference Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618PubMedCrossRef Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618PubMedCrossRef
go back to reference Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162:486–500PubMedCrossRef Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162:486–500PubMedCrossRef
go back to reference Ramanathan S, Tkatch T, Atherton JF, Wilson CJ, Bevan MD (2008) D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. J Neurophysiol 999:442–459CrossRef Ramanathan S, Tkatch T, Atherton JF, Wilson CJ, Bevan MD (2008) D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. J Neurophysiol 999:442–459CrossRef
go back to reference Rinne T, Balk MH, Koistinen S, Autti T, Alho K, Sams M (2008) Auditory selective attention modulates activation of human inferior colliculus. J Neurophysiol 100:3323–3327PubMedCrossRef Rinne T, Balk MH, Koistinen S, Autti T, Alho K, Sams M (2008) Auditory selective attention modulates activation of human inferior colliculus. J Neurophysiol 100:3323–3327PubMedCrossRef
go back to reference Rosenberger MH, Fremouw T, Casseday JH, Covey E (2003) Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. J Comp Neurol 462:101–120PubMedCrossRef Rosenberger MH, Fremouw T, Casseday JH, Covey E (2003) Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. J Comp Neurol 462:101–120PubMedCrossRef
go back to reference Ruel J, Nouvian R, Gervais d’Aldin C, Pujol R, Eybalin M, Puel JL (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14:977–986PubMedCrossRef Ruel J, Nouvian R, Gervais d’Aldin C, Pujol R, Eybalin M, Puel JL (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14:977–986PubMedCrossRef
go back to reference Saint Marie R, Ostapoff RM, Morest D, Wenthold R (1989) Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J Comp Neurol 279:382–396PubMedCrossRef Saint Marie R, Ostapoff RM, Morest D, Wenthold R (1989) Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J Comp Neurol 279:382–396PubMedCrossRef
go back to reference Sasaki A, Sotnikova TD, Gainetdinov RR, Jarvis ED (2006) Social context-dependent singing-related dopamine. J Neurosci 35:9010–9014CrossRef Sasaki A, Sotnikova TD, Gainetdinov RR, Jarvis ED (2006) Social context-dependent singing-related dopamine. J Neurosci 35:9010–9014CrossRef
go back to reference Satake S, Yamada K, Melo LL, Barbosa Silva R (2012) Effects of microinjections of apomorphine and haloperidol into the inferior colliculus on prepulse inhibition of the acoustic startle reflex in rat. Neurosci Lett 509:60–63PubMedCrossRef Satake S, Yamada K, Melo LL, Barbosa Silva R (2012) Effects of microinjections of apomorphine and haloperidol into the inferior colliculus on prepulse inhibition of the acoustic startle reflex in rat. Neurosci Lett 509:60–63PubMedCrossRef
go back to reference Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24PubMedCrossRef Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24PubMedCrossRef
go back to reference Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRef Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRef
go back to reference Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877PubMed Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877PubMed
go back to reference Surmeier DJ, Carrillo-Reid L, Bargas J (2011) Dopaminergic modulation of striatal neurons, circuits and assemblies. Neuroscience 198:3–18PubMedCrossRef Surmeier DJ, Carrillo-Reid L, Bargas J (2011) Dopaminergic modulation of striatal neurons, circuits and assemblies. Neuroscience 198:3–18PubMedCrossRef
go back to reference Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berlin) 199:331–388CrossRef Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berlin) 199:331–388CrossRef
go back to reference Tan ML, Theeuwes HP, Feenstra L, Borst JG (2007) Membrane properties and firing patterns of inferior colliculus neurons: an in vivo patch-clamp study in rodents. J Neurophysiol 98:443–453PubMedCrossRef Tan ML, Theeuwes HP, Feenstra L, Borst JG (2007) Membrane properties and firing patterns of inferior colliculus neurons: an in vivo patch-clamp study in rodents. J Neurophysiol 98:443–453PubMedCrossRef
go back to reference Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 18:2251–2262PubMedCrossRef Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 18:2251–2262PubMedCrossRef
go back to reference Tobin AE, Calabrese RL (2005) Myomodulin increases Ih and inhibits the Na/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 94:3938–3950PubMedCrossRef Tobin AE, Calabrese RL (2005) Myomodulin increases Ih and inhibits the Na/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 94:3938–3950PubMedCrossRef
go back to reference Tong L, Altschuler RA, Holt AG (2005) Tyrosine hydroxylase in rat auditory midbrain: distribution and changes following deafness. Hear Res 206:28–41PubMedCrossRef Tong L, Altschuler RA, Holt AG (2005) Tyrosine hydroxylase in rat auditory midbrain: distribution and changes following deafness. Hear Res 206:28–41PubMedCrossRef
go back to reference Trantham-Davidson H, Neely LC, Lavin A, Seamans JK (2004) Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci 24:10652–10659PubMedCrossRef Trantham-Davidson H, Neely LC, Lavin A, Seamans JK (2004) Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci 24:10652–10659PubMedCrossRef
go back to reference Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195PubMedCrossRef Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195PubMedCrossRef
go back to reference Vandecasteele M, Glowinski J, Deniau JM, Venance L (2008) Chemical transmission between dopaminergic neuron pairs. Proc Natl Acad Sci 105:4904–4909PubMedCrossRef Vandecasteele M, Glowinski J, Deniau JM, Venance L (2008) Chemical transmission between dopaminergic neuron pairs. Proc Natl Acad Sci 105:4904–4909PubMedCrossRef
go back to reference Wamsley JK, Gehlert DR, Filloux FM, Dawson TM (1989) Comparison of the distribution of D-1 and D-2 dopamine receptors in the rat brain. J Chem Neuroanat 2:119–137PubMed Wamsley JK, Gehlert DR, Filloux FM, Dawson TM (1989) Comparison of the distribution of D-1 and D-2 dopamine receptors in the rat brain. J Chem Neuroanat 2:119–137PubMed
go back to reference Weiner DM, Levey AI, Sunahara RK, Niznik HB, O’Dowd BF, Seeman P, Brann MR (1991) D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci 88:1859–1863PubMedCrossRef Weiner DM, Levey AI, Sunahara RK, Niznik HB, O’Dowd BF, Seeman P, Brann MR (1991) D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci 88:1859–1863PubMedCrossRef
go back to reference Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57Bl/6 and CBA mice. J Neurophysiol 56:391–408PubMed Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57Bl/6 and CBA mice. J Neurophysiol 56:391–408PubMed
go back to reference Xie R, Gittelman JX, Li N, Pollak GD (2008) Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus. Neuroscience 154:245–256PubMedCrossRef Xie R, Gittelman JX, Li N, Pollak GD (2008) Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus. Neuroscience 154:245–256PubMedCrossRef
Metadata
Title
Dopamine Modulates Auditory Responses in the Inferior Colliculus in a Heterogeneous Manner
Authors
Joshua X. Gittelman
David J. Perkel
Christine V. Portfors
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 5/2013
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-013-0405-0

Other articles of this Issue 5/2013

Journal of the Association for Research in Otolaryngology 5/2013 Go to the issue