Skip to main content
Top
Published in: Osteoporosis International 4/2008

01-04-2008 | Original Article

Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density?

Authors: E.-M. Lochmüller, K. Pöschl, L. Würstlin, M. Matsuura, R. Müller, T. M. Link, F. Eckstein

Published in: Osteoporosis International | Issue 4/2008

Login to get access

Abstract

Summary

Trabecular bone microstructure was studied in 6 mm bone biopsies taken from the 10th thoracic and 2nd lumbar vertebra of 165 human donors and shown to not differ significantly between these sites. Microstructural parameters at the locations examined provided only marginal additional information to quantitative computed tomography in predicting experimental failure strength.

Introduction

It is unknown whether trabecular microstructure differs between thoracic and lumbar vertebrae and whether it adds significant information in predicting the mechanical strength of vertebrae in combination with QCT-based bone density.

Methods

Six mm cylindrical biopsies taken at mid-vertebral level, anterior to the center of the thoracic vertebra (T) 10 and the lumbar vertebra (L) 2 were studied with micro-computed tomography (μCT) in 165 donors (age 52 to 99 years). The segment T11-L1 was examined with QCT and tested to failure using a testing machine.

Results

The correlation of microstructural properties was moderate between T10 and L2 (r ≤ 0.5). No significant differences were observed in the microstructural properties between the thoracic and lumbar spine, nor were sex differences at T10 or L2 observed. Cortical/subcortical density of T12 (r 2 = 48%) was more strongly correlated with vertebral failure stress than trabecular density (r 2 = 32%). BV/TV (of T10) improved the prediction by 52% (adjusted r 2) in a multiple regression model.

Conclusion

Microstructural properties of trabecular bone biopsies displayed a high degree of heterogeneity between vertebrae but did not differ significantly between the thoracic and lumbar spine. At the locations examined, bone microstructure only marginally improved the prediction of structural vertebral strength beyond QCT-based bone density.
Literature
1.
go back to reference Albright F, Smith PH, Richardson AM (1941) Postmenopausal osteoporosis. JAMA 116:2465–2474 Albright F, Smith PH, Richardson AM (1941) Postmenopausal osteoporosis. JAMA 116:2465–2474
2.
go back to reference Cooper C, Atkinson EJ, O’Fallon WM et al (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMed Cooper C, Atkinson EJ, O’Fallon WM et al (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMed
3.
go back to reference Melton LJ, III, Kan SH, Frye MA et al (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011PubMed Melton LJ, III, Kan SH, Frye MA et al (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011PubMed
4.
go back to reference Felsenberg D (2002) The European Prospective Osteoporosis Study (EPOS) group. Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724CrossRef Felsenberg D (2002) The European Prospective Osteoporosis Study (EPOS) group. Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724CrossRef
5.
go back to reference Leidig-Bruckner G, Minne HW, Schlaich C et al (1997) Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res 12:663–675PubMedCrossRef Leidig-Bruckner G, Minne HW, Schlaich C et al (1997) Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res 12:663–675PubMedCrossRef
6.
go back to reference Lips P, Cooper C, Agnusdei D et al (1999) Quality of life in patients with vertebral fractures: validation of the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO). Working party for quality of life of the european foundation for osteoporosis. Osteoporos Int 10:150–160PubMedCrossRef Lips P, Cooper C, Agnusdei D et al (1999) Quality of life in patients with vertebral fractures: validation of the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO). Working party for quality of life of the european foundation for osteoporosis. Osteoporos Int 10:150–160PubMedCrossRef
7.
go back to reference Ettinger B, Black DM, Nevitt MC et al (1992) Contribution of vertebral deformities to chronic back pain and disability. The study of osteoporotic fractures research group. J Bone Miner Res 7:449–456PubMedCrossRef Ettinger B, Black DM, Nevitt MC et al (1992) Contribution of vertebral deformities to chronic back pain and disability. The study of osteoporotic fractures research group. J Bone Miner Res 7:449–456PubMedCrossRef
8.
go back to reference Kado DM, Duong T, Stone KL et al (2003) Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int Kado DM, Duong T, Stone KL et al (2003) Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int
9.
go back to reference Naves M, Diaz-Lopez JB, Gomez C et al (2003) The effect of vertebral fracture as a risk factor for osteoporotic fracture and mortality in a Spanish population. Osteoporos Int 14:520–524PubMedCrossRef Naves M, Diaz-Lopez JB, Gomez C et al (2003) The effect of vertebral fracture as a risk factor for osteoporotic fracture and mortality in a Spanish population. Osteoporos Int 14:520–524PubMedCrossRef
10.
go back to reference Hasserius R, Karlsson MK, Nilsson BE et al (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 14:61–68PubMedCrossRef Hasserius R, Karlsson MK, Nilsson BE et al (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 14:61–68PubMedCrossRef
11.
go back to reference Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17SPubMedCrossRef Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17SPubMedCrossRef
12.
go back to reference Härmä M, Heliovaara M, Aromaa A et al (1986) Thoracic spine compression fractures in Finland. Clin Orthop 188–194 Härmä M, Heliovaara M, Aromaa A et al (1986) Thoracic spine compression fractures in Finland. Clin Orthop 188–194
13.
go back to reference De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166:497–500PubMed De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166:497–500PubMed
14.
go back to reference Cockerill W, Ismail AA, Cooper C et al (2000) Does location of vertebral deformity within the spine influence back pain and disability? European Vertebral Osteoporosis Study (EVOS) Group. Ann Rheum Dis 59:368–371PubMedCrossRef Cockerill W, Ismail AA, Cooper C et al (2000) Does location of vertebral deformity within the spine influence back pain and disability? European Vertebral Osteoporosis Study (EVOS) Group. Ann Rheum Dis 59:368–371PubMedCrossRef
15.
go back to reference Ismail AA, Cooper C, Felsenberg D et al (1999) Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int 9:206–213PubMedCrossRef Ismail AA, Cooper C, Felsenberg D et al (1999) Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int 9:206–213PubMedCrossRef
16.
go back to reference Amling M, Posl M, Ritzel H et al (1996) Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens. Arch Orthop Trauma Surg 115:262–269PubMedCrossRef Amling M, Posl M, Ritzel H et al (1996) Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens. Arch Orthop Trauma Surg 115:262–269PubMedCrossRef
17.
go back to reference Hildebrand T, Laib A, Müller R et al (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174PubMedCrossRef Hildebrand T, Laib A, Müller R et al (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174PubMedCrossRef
18.
go back to reference Eckstein F, Matsuura M, Kuhn V et al (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 22:817–824PubMedCrossRef Eckstein F, Matsuura M, Kuhn V et al (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 22:817–824PubMedCrossRef
19.
go back to reference Cheng XG, Lowet G, Boonen S et al (1998) Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 13:1439–1443PubMedCrossRef Cheng XG, Lowet G, Boonen S et al (1998) Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 13:1439–1443PubMedCrossRef
20.
go back to reference Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724PubMedCrossRef Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724PubMedCrossRef
21.
go back to reference Lochmüller EM, Bürklein D, Kuhn V et al (2002) Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31:77–84PubMedCrossRef Lochmüller EM, Bürklein D, Kuhn V et al (2002) Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31:77–84PubMedCrossRef
22.
go back to reference Eckstein F, Fischbeck M, Kuhn V et al (2004) Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 35:364–374PubMedCrossRef Eckstein F, Fischbeck M, Kuhn V et al (2004) Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 35:364–374PubMedCrossRef
23.
go back to reference Bauer JS, Issever AS, Fischbeck M et al (2004) [Multislice-CT for structure analysis of trabecular bone - a comparison with micro-CT and biomechanical strength]. Rofo 176:709–718PubMed Bauer JS, Issever AS, Fischbeck M et al (2004) [Multislice-CT for structure analysis of trabecular bone - a comparison with micro-CT and biomechanical strength]. Rofo 176:709–718PubMed
24.
go back to reference Teo JC, Si-Hoe KM, Keh JE et al (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol , Avon ) 21:235–244CrossRef Teo JC, Si-Hoe KM, Keh JE et al (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol , Avon ) 21:235–244CrossRef
25.
go back to reference Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef
26.
go back to reference Link TM, Bauer J, Kollstedt A et al (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497PubMedCrossRef Link TM, Bauer J, Kollstedt A et al (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497PubMedCrossRef
27.
go back to reference Patel PV, Prevrhal S, Bauer JS et al (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253PubMedCrossRef Patel PV, Prevrhal S, Bauer JS et al (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253PubMedCrossRef
28.
go back to reference Waldt S, Meier N, Renger B et al (1999) Strukturanalyse hochauflösender Computertomogramme als ergänzendes Verfahren in der Osteoporosediagnostik: in-vitro-Untersuchungen an Wirbelsäulensegmenten. Röfo Fortschr Röntgenstr 171:136–142CrossRef Waldt S, Meier N, Renger B et al (1999) Strukturanalyse hochauflösender Computertomogramme als ergänzendes Verfahren in der Osteoporosediagnostik: in-vitro-Untersuchungen an Wirbelsäulensegmenten. Röfo Fortschr Röntgenstr 171:136–142CrossRef
29.
go back to reference Muller R, Hannan M, Smith SY et al (2004) Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res 19:1787–1796PubMedCrossRef Muller R, Hannan M, Smith SY et al (2004) Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res 19:1787–1796PubMedCrossRef
30.
go back to reference Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14 (3):S43–S55PubMed Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14 (3):S43–S55PubMed
31.
go back to reference Nägele E, Kuhn V, Vogt H et al (2004) Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int 75:15–22PubMedCrossRef Nägele E, Kuhn V, Vogt H et al (2004) Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int 75:15–22PubMedCrossRef
32.
go back to reference Thomsen JS, Ebbesen EN, Mosekilde L (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone 30:664–669PubMedCrossRef Thomsen JS, Ebbesen EN, Mosekilde L (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone 30:664–669PubMedCrossRef
33.
go back to reference Gong H, Zhang M, Yeung HY et al (2005) Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23:174–180PubMedCrossRef Gong H, Zhang M, Yeung HY et al (2005) Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23:174–180PubMedCrossRef
34.
go back to reference Hildebrand T, Rüegsegger E (1997) Quantification of bone microarchitecture with the structure model index. Comp Meth Biomech Biomed Eng 1:15–23CrossRef Hildebrand T, Rüegsegger E (1997) Quantification of bone microarchitecture with the structure model index. Comp Meth Biomech Biomed Eng 1:15–23CrossRef
35.
go back to reference Kalender WA, Klotz E, Suess C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423PubMed Kalender WA, Klotz E, Suess C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423PubMed
36.
go back to reference Sandor T, Felsenberg D, Kalender WA et al (1992) Compact and trabecular components of the spine using quantitative computed tomography. Calcif Tissue Int 50:502–506PubMedCrossRef Sandor T, Felsenberg D, Kalender WA et al (1992) Compact and trabecular components of the spine using quantitative computed tomography. Calcif Tissue Int 50:502–506PubMedCrossRef
37.
go back to reference Bürklein D, Lochmüller EM, Kuhn V et al (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. J Biomech 34:579–587PubMedCrossRef Bürklein D, Lochmüller EM, Kuhn V et al (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. J Biomech 34:579–587PubMedCrossRef
38.
go back to reference Moro M, Hecker AT, Bouxsein ML et al (1995) Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 56:206–209PubMedCrossRef Moro M, Hecker AT, Bouxsein ML et al (1995) Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 56:206–209PubMedCrossRef
39.
go back to reference Homminga J, Van Rietbergen B, Lochmuller EM et al (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516PubMedCrossRef Homminga J, Van Rietbergen B, Lochmuller EM et al (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516PubMedCrossRef
40.
go back to reference Eswaran SK, Gupta A, Adams MF et al (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314PubMedCrossRef Eswaran SK, Gupta A, Adams MF et al (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314PubMedCrossRef
41.
go back to reference Riggs BL, Melton IL III, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRef Riggs BL, Melton IL III, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRef
42.
go back to reference Sigurdsson G, Aspelund T, Chang M et al (2006) Increasing sex difference in bone strength in old age: The age, gene/environment susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone 39:644–651PubMedCrossRef Sigurdsson G, Aspelund T, Chang M et al (2006) Increasing sex difference in bone strength in old age: The age, gene/environment susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone 39:644–651PubMedCrossRef
43.
go back to reference Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res 14:1394–1403PubMedCrossRef Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res 14:1394–1403PubMedCrossRef
44.
go back to reference Van Rietbergen B, Huiskes R, Eckstein F et al (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18:1781–1788PubMedCrossRef Van Rietbergen B, Huiskes R, Eckstein F et al (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18:1781–1788PubMedCrossRef
45.
go back to reference Pistoia W, Van Rietbergen B, Lochmüller EM et al (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848PubMedCrossRef Pistoia W, Van Rietbergen B, Lochmüller EM et al (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848PubMedCrossRef
Metadata
Title
Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density?
Authors
E.-M. Lochmüller
K. Pöschl
L. Würstlin
M. Matsuura
R. Müller
T. M. Link
F. Eckstein
Publication date
01-04-2008
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 4/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-007-0478-x

Other articles of this Issue 4/2008

Osteoporosis International 4/2008 Go to the issue