Skip to main content
Top
Published in: BMC Infectious Diseases 1/2010

Open Access 01-12-2010 | Debate

Does Glycosylation as a modifier of Original Antigenic Sin explain the case age distribution and unusual toxicity in pandemic novel H1N1 influenza?

Authors: Tom Reichert, Gerardo Chowell, Hiroshi Nishiura, Ronald A Christensen, Jonathan A McCullers

Published in: BMC Infectious Diseases | Issue 1/2010

Login to get access

Abstract

Background

A pandemic novel H1N1 swine-origin influenza virus has emerged. Most recently the World Health Organization has announced that in a country-dependent fashion, up to 15% of cases may require hospitalization, often including respiratory support. It is now clear that healthy children and young adults are disproportionately affected, most unusually among those with severe respiratory disease without underlying conditions. One possible explanation for this case age distribution is the doctrine of Original Antigenic Sin, i.e., novel H1N1 may be antigenically similar to H1N1 viruses that circulated at an earlier time. Persons whose first exposure to influenza viruses was to such similar viruses would be relatively immune. However, this principle is not sufficient to explain the graded susceptibility between ages 20 and 60, the reduced susceptibility in children below age 10, and the unusual toxicity observed.

Methods

We collected case data from 11 countries, about 60% of all cases reported through mid-July 2009. We compared sequence data for the hemagglutinin of novel H1N1 with sequences of H1N1 viruses from 1918 to the present. We searched for sequence differences that imply loss of antigenicity either directly through amino acid substitution or by the appearance of sites for potential glycosylation proximal to sites known to be antigenic in humans. We also considered T-cell epitopes.

Results

In our composite, over 75% of confirmed cases of novel H1N1 occurred in persons ≤ 30 years old, with peak incidence in the age range 10-19 years. Less than 3% of cases occurred in persons over 65, with a gradation in incidence between ages 20 and 60 years.
The sequence data indicates that novel H1N1 is most similar to H1N1 viruses that circulated before 1943. Novel H1N1 lacks glycosylation sites on the globular head of hemagglutinin (HA1) near antigenic regions, a pattern shared with the 1918 pandemic strain and H1N1 viruses that circulated until the early 1940s. Later H1N1 viruses progressively added new glycosylation sites likely to shield antigenic epitopes, while T-cell epitopes were relatively unchanged.

Conclusions

In this evolutionary context, Original Antigenic Sin exposure should produce an immune response increasingly mismatched to novel H1N1 in progressively younger persons. We suggest that it is this mismatch that produces both the gradation in susceptibility and the unusual toxicity. Several murine studies suggest specific cell types as a likely basis of the unusual toxicity. These studies also point to widely available pharmaceutical agents as plausible candidates for mitigating the toxic effects. The principle of Original Antigenic Sin modified by glycosylation appears to explain both the case age distribution and the unusual toxicity pattern of the novel H1N1 pandemic. In addition, it suggests pharmaceutical agents for immediate investigation for mitigation potential, and provides strategic guidance for the distribution of pandemic mitigation resources of all types.
Appendix
Available only for authorised users
Literature
8.
go back to reference Environmental Science and Research (ESR), New Zealand: Descriptive epidemiology of novel influenza A H1N1 New Zealand, April-June 2009 (Update 42). 2009, Porirua, ESR Environmental Science and Research (ESR), New Zealand: Descriptive epidemiology of novel influenza A H1N1 New Zealand, April-June 2009 (Update 42). 2009, Porirua, ESR
9.
go back to reference Nishiura H, Castillo-Chavez , Safan M, Chowell G: Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill. 2009, 14 (22): Nishiura H, Castillo-Chavez , Safan M, Chowell G: Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill. 2009, 14 (22):
10.
go back to reference Ministry of Public Health (MOPH), Thailand: Outbreaks of influenza A (H1N1). Situation updates (22 July 2009). 2009, Nonthhaburi, MOPH Ministry of Public Health (MOPH), Thailand: Outbreaks of influenza A (H1N1). Situation updates (22 July 2009). 2009, Nonthhaburi, MOPH
13.
go back to reference Squires B, Macken C, Garcia-Sastre A, et al: BioHealthBase: informatics support in the elucidation of influenza virus host pathogen interactions and virulence. Nucleic Acids Research. 2008, D497-503. 36 Database Squires B, Macken C, Garcia-Sastre A, et al: BioHealthBase: informatics support in the elucidation of influenza virus host pathogen interactions and virulence. Nucleic Acids Research. 2008, D497-503. 36 Database
14.
go back to reference McCullers JA, Saito T, Iverson AR: Multiple genotypes of influenza B virus circulated between 1979 and 2003. J Virol. 2004, 78 (23): 12817-28. 10.1128/JVI.78.23.12817-12828.2004.CrossRefPubMedPubMedCentral McCullers JA, Saito T, Iverson AR: Multiple genotypes of influenza B virus circulated between 1979 and 2003. J Virol. 2004, 78 (23): 12817-28. 10.1128/JVI.78.23.12817-12828.2004.CrossRefPubMedPubMedCentral
15.
go back to reference Davenport FM, Hennesey AV, Francis T: Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med. 1953, 99: 641-656. 10.1084/jem.98.6.641.CrossRef Davenport FM, Hennesey AV, Francis T: Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med. 1953, 99: 641-656. 10.1084/jem.98.6.641.CrossRef
16.
go back to reference De St Groth F, Webster RG: Discussions of original antigenic sin: I. Evidence in man. J Exp Med. 1966, 124 (3): 331-45. 10.1084/jem.124.3.331.CrossRefPubMedCentral De St Groth F, Webster RG: Discussions of original antigenic sin: I. Evidence in man. J Exp Med. 1966, 124 (3): 331-45. 10.1084/jem.124.3.331.CrossRefPubMedCentral
18.
go back to reference Klenerman P, Zinkernagel RM: Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature. 1998, 394 (6692): 482-5. 10.1038/28860.CrossRefPubMed Klenerman P, Zinkernagel RM: Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature. 1998, 394 (6692): 482-5. 10.1038/28860.CrossRefPubMed
19.
go back to reference Scholtissek C, von Hoyningen V, Rott R: Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1). Virology. 1978, 89: 613-7. 10.1016/0042-6822(78)90203-9.CrossRefPubMed Scholtissek C, von Hoyningen V, Rott R: Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1). Virology. 1978, 89: 613-7. 10.1016/0042-6822(78)90203-9.CrossRefPubMed
20.
go back to reference Nakajima K, Desselberger U, Palese P: Recent human influenza A(H1N1) viruses are closely related genetically to strains isolated in 1950. Nature. 1978, 274: 334-9. 10.1038/274334a0.CrossRefPubMed Nakajima K, Desselberger U, Palese P: Recent human influenza A(H1N1) viruses are closely related genetically to strains isolated in 1950. Nature. 1978, 274: 334-9. 10.1038/274334a0.CrossRefPubMed
21.
go back to reference Brownlee GG, Fodor E: The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Phil Trans R Soc Lond B. 2001, 356: 1871-6. 10.1098/rstb.2001.1001.CrossRef Brownlee GG, Fodor E: The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Phil Trans R Soc Lond B. 2001, 356: 1871-6. 10.1098/rstb.2001.1001.CrossRef
22.
go back to reference Yu X, Tsibane T, McGraw PA, et al: Neutralizing antibodies derived from the B-cells of 1918 influenza pandemic survivors. Nature. 2008, 455 (7212): 532-6. 10.1038/nature07231.CrossRefPubMedPubMedCentral Yu X, Tsibane T, McGraw PA, et al: Neutralizing antibodies derived from the B-cells of 1918 influenza pandemic survivors. Nature. 2008, 455 (7212): 532-6. 10.1038/nature07231.CrossRefPubMedPubMedCentral
23.
go back to reference Reichert TA, Christensen RA: It's not about smoldering or neuraminidase; There were two A(H3N2) pandemic internal gene variants. J Infect Dis. 2005, 192: 1858-60. 10.1086/497153.CrossRefPubMed Reichert TA, Christensen RA: It's not about smoldering or neuraminidase; There were two A(H3N2) pandemic internal gene variants. J Infect Dis. 2005, 192: 1858-60. 10.1086/497153.CrossRefPubMed
24.
go back to reference Kilbourne BD, Smith C, Brett I, Pokory BA, Johansson B, Cox N: The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic. Proc Natl Acad Sci USA. 2002, 99: 10748-52. 10.1073/pnas.162366899.CrossRefPubMedPubMedCentral Kilbourne BD, Smith C, Brett I, Pokory BA, Johansson B, Cox N: The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic. Proc Natl Acad Sci USA. 2002, 99: 10748-52. 10.1073/pnas.162366899.CrossRefPubMedPubMedCentral
25.
go back to reference Vigerust DJ, Ulet KB, Boyd KL, Madsen J, Hawgood S, McCullers JA: N-Linked Glycosylation Attenuates H3N2 Influenza Viruses. J Virol. 2007, 81: 8593-9. 10.1128/JVI.00769-07.CrossRefPubMedPubMedCentral Vigerust DJ, Ulet KB, Boyd KL, Madsen J, Hawgood S, McCullers JA: N-Linked Glycosylation Attenuates H3N2 Influenza Viruses. J Virol. 2007, 81: 8593-9. 10.1128/JVI.00769-07.CrossRefPubMedPubMedCentral
26.
go back to reference Reading PC, Morey LS, Crouch EC, Anders EM: Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol. 1997, 71 (11): 8204-12.PubMedPubMedCentral Reading PC, Morey LS, Crouch EC, Anders EM: Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol. 1997, 71 (11): 8204-12.PubMedPubMedCentral
27.
go back to reference Gamblin SJ, Haire LF, Russell RJ, et al: The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science. 2004, 303: 1838-42. 10.1126/science.1093155.CrossRefPubMed Gamblin SJ, Haire LF, Russell RJ, et al: The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science. 2004, 303: 1838-42. 10.1126/science.1093155.CrossRefPubMed
28.
go back to reference Rimmelzwaan GF, Boon AC, Voeten JT, Berkhoff EG, Fouchier RA, Osterhaus AD: Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotix T lymphocytes. Virus Res. 2004, 103: 97-100. 10.1016/j.virusres.2004.02.020.CrossRefPubMed Rimmelzwaan GF, Boon AC, Voeten JT, Berkhoff EG, Fouchier RA, Osterhaus AD: Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotix T lymphocytes. Virus Res. 2004, 103: 97-100. 10.1016/j.virusres.2004.02.020.CrossRefPubMed
29.
go back to reference De Groot A, Ardito M, McClaine E, Moise L, Martin B: Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A(H1N1) virus with epitopes in 2008-2009 conventional influenza vaccine. Vaccine. 2009, 27: 5740-5747. 10.1016/j.vaccine.2009.07.040.CrossRefPubMed De Groot A, Ardito M, McClaine E, Moise L, Martin B: Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A(H1N1) virus with epitopes in 2008-2009 conventional influenza vaccine. Vaccine. 2009, 27: 5740-5747. 10.1016/j.vaccine.2009.07.040.CrossRefPubMed
30.
go back to reference Greenbaum JA, Kotturi MF, Kim Y, et al: Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proc Nat Acad Sci USA. 2009, 106: 20365-70. 10.1073/pnas.0911580106.CrossRefPubMedPubMedCentral Greenbaum JA, Kotturi MF, Kim Y, et al: Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proc Nat Acad Sci USA. 2009, 106: 20365-70. 10.1073/pnas.0911580106.CrossRefPubMedPubMedCentral
31.
go back to reference Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Basler CF: Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA. 2004, 101 (9): 3166-71. 10.1073/pnas.0308391100.CrossRefPubMedPubMedCentral Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Basler CF: Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA. 2004, 101 (9): 3166-71. 10.1073/pnas.0308391100.CrossRefPubMedPubMedCentral
32.
go back to reference Itoh Y, Shinya K, Kiso M, et al: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature. 2009, 460: 1021-1025.PubMedPubMedCentral Itoh Y, Shinya K, Kiso M, et al: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature. 2009, 460: 1021-1025.PubMedPubMedCentral
33.
go back to reference Mauad T, Hajjar LA, Callegari GS, et al: Lung pathology in fatal novel human influenza A (H1N1) infection. Am J Resp Crit Care. 2010, 181: 72-79. 10.1164/rccm.200909-1420OC.CrossRef Mauad T, Hajjar LA, Callegari GS, et al: Lung pathology in fatal novel human influenza A (H1N1) infection. Am J Resp Crit Care. 2010, 181: 72-79. 10.1164/rccm.200909-1420OC.CrossRef
34.
go back to reference Simonsen L, Clarke MJ, Williamson GD, et al: The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health. 1007 (87): 1944-50. Simonsen L, Clarke MJ, Williamson GD, et al: The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health. 1007 (87): 1944-50.
35.
go back to reference Brownstein JS, Kleinman KP, Mandl KD: Identifying pediatric age groups for influenza vaccination using a real-time regional surveillance system. Am J Epidemiol. 2005, 162: 686-93. 10.1093/aje/kwi257.CrossRefPubMedPubMedCentral Brownstein JS, Kleinman KP, Mandl KD: Identifying pediatric age groups for influenza vaccination using a real-time regional surveillance system. Am J Epidemiol. 2005, 162: 686-93. 10.1093/aje/kwi257.CrossRefPubMedPubMedCentral
37.
go back to reference Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC: The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008, 453: 615-9. 10.1038/nature06945.CrossRefPubMedPubMedCentral Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC: The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008, 453: 615-9. 10.1038/nature06945.CrossRefPubMedPubMedCentral
38.
go back to reference Aldridge JR, Moseley CE, Boltz DA, Negovetich NJ, Reynolds C, Franks J, et al: TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci USA. 2009, 106 (13): 5306-11. 10.1073/pnas.0900655106.CrossRefPubMedPubMedCentral Aldridge JR, Moseley CE, Boltz DA, Negovetich NJ, Reynolds C, Franks J, et al: TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci USA. 2009, 106 (13): 5306-11. 10.1073/pnas.0900655106.CrossRefPubMedPubMedCentral
40.
go back to reference Perez-Padilla R, Rosa-Zamboni D, Ponce de Leon S, et al: Pneumonia and Respiratory Failure from Swine-Origin Influenza A (H1N1) in Mexico. N Engl J Med. 2009, 361: 680-9. 10.1056/NEJMoa0904252.CrossRefPubMed Perez-Padilla R, Rosa-Zamboni D, Ponce de Leon S, et al: Pneumonia and Respiratory Failure from Swine-Origin Influenza A (H1N1) in Mexico. N Engl J Med. 2009, 361: 680-9. 10.1056/NEJMoa0904252.CrossRefPubMed
41.
go back to reference Fedson DS: Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respi Viruses. 2009, 3 (4): 129-142. 10.1111/j.1750-2659.2009.00090.x.CrossRef Fedson DS: Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respi Viruses. 2009, 3 (4): 129-142. 10.1111/j.1750-2659.2009.00090.x.CrossRef
42.
go back to reference Zimmer SM, Burke DS: Historical Perspective - Emergence of Influenza A(H1N1) viruses. N Engl J Med. 2009, 361: 279-85. 10.1056/NEJMra0904322.CrossRefPubMed Zimmer SM, Burke DS: Historical Perspective - Emergence of Influenza A(H1N1) viruses. N Engl J Med. 2009, 361: 279-85. 10.1056/NEJMra0904322.CrossRefPubMed
43.
go back to reference Sonoguchi T, Naito H, Hara M, Takeuchi Y, Fukumi H: Cross-subtypre protection in humans during sequential, overlapping, and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses. J Infect Dis. 1985, 151: 81-8.CrossRefPubMed Sonoguchi T, Naito H, Hara M, Takeuchi Y, Fukumi H: Cross-subtypre protection in humans during sequential, overlapping, and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses. J Infect Dis. 1985, 151: 81-8.CrossRefPubMed
44.
go back to reference Francis T: On the doctrine of original antigenic sin. Proc Am Phil Soc. 1960, 104: 572-578. Francis T: On the doctrine of original antigenic sin. Proc Am Phil Soc. 1960, 104: 572-578.
Metadata
Title
Does Glycosylation as a modifier of Original Antigenic Sin explain the case age distribution and unusual toxicity in pandemic novel H1N1 influenza?
Authors
Tom Reichert
Gerardo Chowell
Hiroshi Nishiura
Ronald A Christensen
Jonathan A McCullers
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2010
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-10-5

Other articles of this Issue 1/2010

BMC Infectious Diseases 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine