Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2014

Open Access 01-12-2014 | Research

Does flip-flop style footwear modify ankle biomechanics and foot loading patterns?

Authors: Carina Price, Vaidas Andrejevas, Andrew H Findlow, Philip Graham-Smith, Richard Jones

Published in: Journal of Foot and Ankle Research | Issue 1/2014

Login to get access

Abstract

Background

Flip-flops are an item of footwear, which are rubber and loosely secured across the dorsal fore-foot. These are popular in warm climates; however are widely criticised for being detrimental to foot health and potentially modifying walking gait. Contemporary alternatives exist including FitFlop, which has a wider strap positioned closer to the ankle and a thicker, ergonomic, multi-density midsole. Therefore the current study investigated gait modifications when wearing flip-flop style footwear compared to barefoot walking. Additionally walking in a flip-flop was compared to that FitFlop alternative.

Methods

Testing was undertaken on 40 participants (20 male and 20 female, mean ± 1 SD age 35.2 ± 10.2 years, B.M.I 24.8 ± 4.7 kg.m-2). Kinematic, kinetic and electromyographic gait parameters were collected while participants walked through a 3D capture volume over a force plate with the lower limbs defined using retro-reflective markers. Ankle angle in swing, frontal plane motion in stance and force loading rates at initial contact were compared. Statistical analysis utilised ANOVA to compare differences between experimental conditions.

Results

The flip-flop footwear conditions altered gait parameters when compared to barefoot. Maximum ankle dorsiflexion in swing was greater in the flip-flop (7.6 ± 2.6°, p = 0.004) and FitFlop (8.5 ± 3.4°, p < 0.001) than barefoot (6.7 ± 2.6°). Significantly higher tibialis anterior activation was measured in terminal swing in FitFlop (32.6%, p < 0.001) and flip-flop (31.2%, p < 0.001) compared to barefoot. A faster heel velocity toward the floor was evident in the FitFlop (-.326 ± .068 m.s-1, p < 0.001) and flip-flop (-.342 ± .074 m.s-1, p < 0.001) compared to barefoot (-.170 ± .065 m.s-1). The FitFlop reduced frontal plane ankle peak eversion during stance (-3.5 ± 2.2°) compared to walking in the flip-flop (-4.4 ± 1.9°, p = 0.008) and barefoot (-4.3 ± 2.1°, p = 0.032). The FitFlop more effectively attenuated impact compared to the flip-flop, reducing the maximal instantaneous loading rate by 19% (p < 0.001).

Conclusions

Modifications to the sagittal plane ankle angle, frontal plane motion and characteristics of initial contact observed in barefoot walking occur in flip-flop footwear. The FitFlop may reduce risks traditionally associated with flip-flop footwear by reducing loading rate at heel strike and frontal plane motion at the ankle during stance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carl TJ, Barrett SL: Computerized analysis of plantar pressure variation in flip-flops, athletic shoes, and bare feet. J Am Podiatr Med Assoc. 2008, 98 (5): 374-378. 10.7547/0980374.CrossRefPubMed Carl TJ, Barrett SL: Computerized analysis of plantar pressure variation in flip-flops, athletic shoes, and bare feet. J Am Podiatr Med Assoc. 2008, 98 (5): 374-378. 10.7547/0980374.CrossRefPubMed
2.
go back to reference Finnis KK, Walton D: Field observations to determine the influence of population size, location and individual factors on pedestrian walking speeds. Ergonomics. 2008, 51 (6): 827-842. 10.1080/00140130701812147.CrossRefPubMed Finnis KK, Walton D: Field observations to determine the influence of population size, location and individual factors on pedestrian walking speeds. Ergonomics. 2008, 51 (6): 827-842. 10.1080/00140130701812147.CrossRefPubMed
5.
go back to reference Barton CJ, Bonanno D, Menz HB: Development and evaluation of a tool for the assessment of footwear characteristics.J Foot Ankle Res 2009, 2:10., Barton CJ, Bonanno D, Menz HB: Development and evaluation of a tool for the assessment of footwear characteristics.J Foot Ankle Res 2009, 2:10.,
6.
go back to reference Chard A, Greene A, Hunt A, Vanwanseele B, Smith R: Effect of thong style flip-flops on children's barefoot walking and jogging kinematics.J Foot Ankle Res 2013, 6:8., Chard A, Greene A, Hunt A, Vanwanseele B, Smith R: Effect of thong style flip-flops on children's barefoot walking and jogging kinematics.J Foot Ankle Res 2013, 6:8.,
7.
go back to reference Chard A, Smith R, Hunt A, Green A: Effect Of Thong Style Flip-Flop Footwear On Children's Hallux Sagittal Plane Motion During Gait. In Brussels, Belgium: International Society of Biomechanics; 2011. Chard A, Smith R, Hunt A, Green A: Effect Of Thong Style Flip-Flop Footwear On Children's Hallux Sagittal Plane Motion During Gait. In Brussels, Belgium: International Society of Biomechanics; 2011.
8.
go back to reference Shroyer JF, Shroyer JE, Sumner AM, Weimar WH: Effect of various thong flip-flops on pronation and eversion during midstance.Med Sci Sports Exerc 2010, 42:270., Shroyer JF, Shroyer JE, Sumner AM, Weimar WH: Effect of various thong flip-flops on pronation and eversion during midstance.Med Sci Sports Exerc 2010, 42:270.,
9.
go back to reference Shroyer JF, Weimar WH: Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers. J Am Podiatr Med Assoc. 2010, 100 (4): 251-257. 10.7547/1000251.CrossRefPubMed Shroyer JF, Weimar WH: Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers. J Am Podiatr Med Assoc. 2010, 100 (4): 251-257. 10.7547/1000251.CrossRefPubMed
10.
go back to reference Zhang X, Paquette MR, Zhang S: A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.J Foot Ankle Res 2013, 6:45., Zhang X, Paquette MR, Zhang S: A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.J Foot Ankle Res 2013, 6:45.,
12.
go back to reference Price C, Graham-Smith P, Jones R: A comparison of plantar pressures in a standard flip-flop and a FitFlop using bespoke pressure insoles. Footwear Sci. 2013, 5 (2): 111-119. 10.1080/19424280.2013.790486.CrossRef Price C, Graham-Smith P, Jones R: A comparison of plantar pressures in a standard flip-flop and a FitFlop using bespoke pressure insoles. Footwear Sci. 2013, 5 (2): 111-119. 10.1080/19424280.2013.790486.CrossRef
13.
go back to reference Cappozzo A, Catani F, Croce UD, Leardini A: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995, 10 (4): 171-178. 10.1016/0268-0033(95)91394-T.CrossRef Cappozzo A, Catani F, Croce UD, Leardini A: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995, 10 (4): 171-178. 10.1016/0268-0033(95)91394-T.CrossRef
14.
go back to reference Ren L, Jones RK, Howard D: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J Biomech. 2008, 41 (12): 2750-2759. 10.1016/j.jbiomech.2008.06.001.CrossRefPubMed Ren L, Jones RK, Howard D: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J Biomech. 2008, 41 (12): 2750-2759. 10.1016/j.jbiomech.2008.06.001.CrossRefPubMed
15.
go back to reference Lafortune M, Hennig E: Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clin Biomech. 1992, 7 (3): 181-184. 10.1016/0268-0033(92)90034-2.CrossRef Lafortune M, Hennig E: Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clin Biomech. 1992, 7 (3): 181-184. 10.1016/0268-0033(92)90034-2.CrossRef
16.
go back to reference Perry S, Lafortune M: Influences of inversion/eversion of the foot upon impact loading during locomotion. Clin Biomech. 1995, 10 (5): 253-257. 10.1016/0268-0033(95)00006-7.CrossRef Perry S, Lafortune M: Influences of inversion/eversion of the foot upon impact loading during locomotion. Clin Biomech. 1995, 10 (5): 253-257. 10.1016/0268-0033(95)00006-7.CrossRef
17.
go back to reference Hermans HJ, Freriks B, Merletti R, Stegemen D, Blok J, Rau G, Disselhorst-Klug C, Hägg G: SENIAM8 European Recommendations for Surface Electromyography. 1999, Roessingh Research and Development, The Netherlands Hermans HJ, Freriks B, Merletti R, Stegemen D, Blok J, Rau G, Disselhorst-Klug C, Hägg G: SENIAM8 European Recommendations for Surface Electromyography. 1999, Roessingh Research and Development, The Netherlands
18.
go back to reference Perry J, Burnfield JM: Gait Analysis: Normal and Pathological Function. 2010 Perry J, Burnfield JM: Gait Analysis: Normal and Pathological Function. 2010
19.
go back to reference Wolf S, Simon J, Patikas D, Waltraud S, Armbrust P, Döderlein L: Foot motion in children shoes—a comparison of barefoot walking with shod walking in conventional and flexible shoes. Gait Posture. 2008, 27 (1): 51-59. 10.1016/j.gaitpost.2007.01.005.CrossRefPubMed Wolf S, Simon J, Patikas D, Waltraud S, Armbrust P, Döderlein L: Foot motion in children shoes—a comparison of barefoot walking with shod walking in conventional and flexible shoes. Gait Posture. 2008, 27 (1): 51-59. 10.1016/j.gaitpost.2007.01.005.CrossRefPubMed
20.
go back to reference Mündermann A, Nigg BM, Humble NR, Stefanyshyn DJ: Foot orthotics affect lower extremity kinematics and kinetics during running. Clin Biomech. 2003, 18 (3): 254-262. 10.1016/S0268-0033(02)00186-9.CrossRef Mündermann A, Nigg BM, Humble NR, Stefanyshyn DJ: Foot orthotics affect lower extremity kinematics and kinetics during running. Clin Biomech. 2003, 18 (3): 254-262. 10.1016/S0268-0033(02)00186-9.CrossRef
21.
go back to reference McClay I: The evolution of the study of the mechanics of running. Relationship to injury. J Am Podiatr Med Assoc. 2000, 90 (3): 133-148. 10.7547/87507315-90-3-133.CrossRefPubMed McClay I: The evolution of the study of the mechanics of running. Relationship to injury. J Am Podiatr Med Assoc. 2000, 90 (3): 133-148. 10.7547/87507315-90-3-133.CrossRefPubMed
22.
go back to reference Willems TM, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E: A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006, 23 (1): 91-98. 10.1016/j.gaitpost.2004.12.004.CrossRefPubMed Willems TM, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E: A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006, 23 (1): 91-98. 10.1016/j.gaitpost.2004.12.004.CrossRefPubMed
23.
go back to reference Shakoor N, Sengupta M, Foucher KC, Wimmer MA, Fogg LF, Block JA: Effects of common footwear on joint loading in osteoarthritis of the knee. Arthritis Care Res. 2010, 62 (7): 917-923. 10.1002/acr.20165.CrossRef Shakoor N, Sengupta M, Foucher KC, Wimmer MA, Fogg LF, Block JA: Effects of common footwear on joint loading in osteoarthritis of the knee. Arthritis Care Res. 2010, 62 (7): 917-923. 10.1002/acr.20165.CrossRef
24.
go back to reference Lake M, Robinson M: Biomechanics Of Walking In Different Shoes: A Comparison Between Overground And Treadmill Testing Protocols. 7th Symposium On Footwear Biomechanics. 2005, The International Society of Biomechanics Technical Group on Footwear Biomechanics, Cleveland, Ohio USA Lake M, Robinson M: Biomechanics Of Walking In Different Shoes: A Comparison Between Overground And Treadmill Testing Protocols. 7th Symposium On Footwear Biomechanics. 2005, The International Society of Biomechanics Technical Group on Footwear Biomechanics, Cleveland, Ohio USA
25.
go back to reference Price C, Cooper G, Graham-Smith P, Jones R: A mechanical protocol to replicate impact in walking footwear. Gait Posture. 2014, 40 (1): 26-31. 10.1016/j.gaitpost.2014.01.014.CrossRefPubMed Price C, Cooper G, Graham-Smith P, Jones R: A mechanical protocol to replicate impact in walking footwear. Gait Posture. 2014, 40 (1): 26-31. 10.1016/j.gaitpost.2014.01.014.CrossRefPubMed
26.
go back to reference De Wit B, De Clercq D, Aerts P: Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech. 2000, 33 (3): 269-278. 10.1016/S0021-9290(99)00192-X.CrossRefPubMed De Wit B, De Clercq D, Aerts P: Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech. 2000, 33 (3): 269-278. 10.1016/S0021-9290(99)00192-X.CrossRefPubMed
27.
go back to reference Whittle MW: Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture. 1999, 10 (3): 264-275. 10.1016/S0966-6362(99)00041-7.CrossRefPubMed Whittle MW: Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture. 1999, 10 (3): 264-275. 10.1016/S0966-6362(99)00041-7.CrossRefPubMed
28.
go back to reference Collins JJ, Whittle MW: Impulsive forces during walking and their clinical implications. Clin Biomech. 1989, 4 (3): 179-187. 10.1016/0268-0033(89)90023-5.CrossRef Collins JJ, Whittle MW: Impulsive forces during walking and their clinical implications. Clin Biomech. 1989, 4 (3): 179-187. 10.1016/0268-0033(89)90023-5.CrossRef
29.
go back to reference Voloshin A, Wosk J: An in vivo study of low back pain and shock absorption in the human locomotor system. J Biomech. 1982, 15 (1): 21-27. 10.1016/0021-9290(82)90031-8.CrossRefPubMed Voloshin A, Wosk J: An in vivo study of low back pain and shock absorption in the human locomotor system. J Biomech. 1982, 15 (1): 21-27. 10.1016/0021-9290(82)90031-8.CrossRefPubMed
Metadata
Title
Does flip-flop style footwear modify ankle biomechanics and foot loading patterns?
Authors
Carina Price
Vaidas Andrejevas
Andrew H Findlow
Philip Graham-Smith
Richard Jones
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2014
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-014-0040-y

Other articles of this Issue 1/2014

Journal of Foot and Ankle Research 1/2014 Go to the issue