Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2015

Open Access 01-12-2015 | Research

Does bracing affect bone health in women with adolescent idiopathic scoliosis?

Authors: Nasreen Akseer, Kimberly Kish, W Alan Rigby, Matthew Greenway, Panagiota Klentrou, Philip M Wilson, Bareket Falk

Published in: Scoliosis and Spinal Disorders | Issue 1/2015

Login to get access

Abstract

Purpose

Adolescent idiopathic scoliosis (AIS) is often associated with low bone mineral content and density (BMC, BMD). Bracing, used to manage spine curvature, may interfere with the growth-related BMC accrual, resulting in reduced bone strength into adulthood. The purpose of this study was to assess the effects of brace treatment on BMC in adult women, diagnosed with AIS and braced in early adolescence.

Methods

Participants included women with AIS who: (i) underwent brace treatment (AIS-B, n = 15, 25.6 ± 5.8 yrs), (ii) underwent no treatment (AIS, n = 15, 24.0 ± 4.0 yrs), and (iii) a healthy comparison group (CON, n = 19, 23.5 ± 3.8 yrs). BMC and body composition were assessed using dual-energy X-ray absorptiometry. Differences between groups were examined using a oneway ANOVA or ANCOVA, as appropriate.

Results

AIS-B underwent brace treatment 27.9 ± 21.6 months, for 18.0 ± 5.4 h/d. Femoral neck BMC was lower (p = 0.06) in AIS-B (4.54 ± 0.10 g) compared with AIS (4.89 ± 0.61 g) and CON (5.07 ± 0.58 g). Controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was statistically different (p = 0.02) between groups. A similar pattern was observed at other lower extremity sites (p < 0.05), but not in the spine or upper extremities. BMC and BMD did not correlate with duration of brace treatment, duration of daily brace wear, or overall physical activity.

Conclusion

Young women with AIS, especially those who were treated with a brace, have significantly lower BMC in their lower limbs compared to women without AIS. However, the lack of a relationship between brace treatment duration during adolescence and BMC during young adulthood, suggests that the brace treatment is not the likely mechanism of the low BMC.
Literature
1.
go back to reference James JI. Idiopathic scoliosis; the prognosis, diagnosis, and operative indications related to curve patterns and the age at onset. J Bone Joint Surg Br. 1954;36-B:36–49.PubMed James JI. Idiopathic scoliosis; the prognosis, diagnosis, and operative indications related to curve patterns and the age at onset. J Bone Joint Surg Br. 1954;36-B:36–49.PubMed
3.
go back to reference Maruyama T, Grivas TB, Kaspiris A. Effectiveness and outcomes of brace treatment: a systematic review. Physiother Theory Pract. 2011;27:26–42.CrossRefPubMed Maruyama T, Grivas TB, Kaspiris A. Effectiveness and outcomes of brace treatment: a systematic review. Physiother Theory Pract. 2011;27:26–42.CrossRefPubMed
4.
go back to reference Negrini S, Aulisa AG, Aulisa L, Circo AB, de Mauroy JC, Durmala J, et al. 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis. 2012;7:3.CrossRefPubMedPubMedCentral Negrini S, Aulisa AG, Aulisa L, Circo AB, de Mauroy JC, Durmala J, et al. 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis. 2012;7:3.CrossRefPubMedPubMedCentral
6.
go back to reference Danielsson AJ, Romberg K, Nachemson AL. Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case–control study. Spine (Phila Pa 1976). 2006;31:275–83.CrossRef Danielsson AJ, Romberg K, Nachemson AL. Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case–control study. Spine (Phila Pa 1976). 2006;31:275–83.CrossRef
7.
go back to reference Rogala EJ, Drummond DS, Gurr J. Scoliosis: incidence and natural history: a prospective epidemiological study. J Bone Joint Surg Am. 1978;60:173–6.PubMed Rogala EJ, Drummond DS, Gurr J. Scoliosis: incidence and natural history: a prospective epidemiological study. J Bone Joint Surg Am. 1978;60:173–6.PubMed
8.
go back to reference Climent JM, Sanchez J. Impact of the type of brace on the quality of life of adolescents with spine deformities. Spine (Phila Pa 1976). 1999;24:1903–8.CrossRef Climent JM, Sanchez J. Impact of the type of brace on the quality of life of adolescents with spine deformities. Spine (Phila Pa 1976). 1999;24:1903–8.CrossRef
9.
go back to reference Danielsson AJ, Wiklund I, Pehrsson K, Nachemson AL. Health-related quality of life in patients with adolescent idiopathic scoliosis: a matched follow-up at least 20 years after treatment with brace or surgery. Eur Spine J. 2001;10:278–88.CrossRefPubMedPubMedCentral Danielsson AJ, Wiklund I, Pehrsson K, Nachemson AL. Health-related quality of life in patients with adolescent idiopathic scoliosis: a matched follow-up at least 20 years after treatment with brace or surgery. Eur Spine J. 2001;10:278–88.CrossRefPubMedPubMedCentral
10.
go back to reference Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.CrossRefPubMedPubMedCentral Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.CrossRefPubMedPubMedCentral
11.
go back to reference MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med. 2002;36:250–7. discussion 257.CrossRefPubMedPubMedCentral MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med. 2002;36:250–7. discussion 257.CrossRefPubMedPubMedCentral
12.
go back to reference Boreham CA, McKay HA. Physical activity in childhood and bone health. Br J Sports Med. 2011;45:877–9.CrossRefPubMed Boreham CA, McKay HA. Physical activity in childhood and bone health. Br J Sports Med. 2011;45:877–9.CrossRefPubMed
13.
go back to reference Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.CrossRefPubMed Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.CrossRefPubMed
14.
go back to reference Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, et al. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010;42:1072–8.CrossRefPubMedPubMedCentral Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, et al. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010;42:1072–8.CrossRefPubMedPubMedCentral
15.
go back to reference Lonstein JE. Scoliosis: surgical versus nonsurgical treatment. Clin Orthop Relat Res. 2006;443:248–59.CrossRefPubMed Lonstein JE. Scoliosis: surgical versus nonsurgical treatment. Clin Orthop Relat Res. 2006;443:248–59.CrossRefPubMed
16.
go back to reference Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, et al. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15:1587–95.CrossRefPubMed Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, et al. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15:1587–95.CrossRefPubMed
17.
go back to reference Cheng JC, Tang SP, Guo X, Chan CW, Qin L. Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine (Phila Pa 1976). 2001;26:E19–23.CrossRef Cheng JC, Tang SP, Guo X, Chan CW, Qin L. Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine (Phila Pa 1976). 2001;26:E19–23.CrossRef
18.
go back to reference Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Ho SC, et al. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int. 2005;16:1024–35.CrossRefPubMed Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Ho SC, et al. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int. 2005;16:1024–35.CrossRefPubMed
19.
go back to reference Park WW, Suh KT, Kim JI, Kim SJ, Lee JS. Decreased osteogenic differentiation of mesenchymal stem cells and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18:1920–6.CrossRefPubMedPubMedCentral Park WW, Suh KT, Kim JI, Kim SJ, Lee JS. Decreased osteogenic differentiation of mesenchymal stem cells and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18:1920–6.CrossRefPubMedPubMedCentral
20.
go back to reference Sadat-Ali M, Al-Othman A, Bubshait D, Al-Dakheel D. Does scoliosis causes low bone mass? A comparative study between siblings. Eur Spine J. 2008;17:944–7.CrossRefPubMedPubMedCentral Sadat-Ali M, Al-Othman A, Bubshait D, Al-Dakheel D. Does scoliosis causes low bone mass? A comparative study between siblings. Eur Spine J. 2008;17:944–7.CrossRefPubMedPubMedCentral
21.
go back to reference Szalay EA, Bosch P, Schwend RM, Buggie B, Tandberg D, Sherman F. Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976). 2008;33:802–6.CrossRef Szalay EA, Bosch P, Schwend RM, Buggie B, Tandberg D, Sherman F. Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976). 2008;33:802–6.CrossRef
22.
go back to reference Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M, et al. Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop. 1992;12:235–40.CrossRefPubMed Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M, et al. Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop. 1992;12:235–40.CrossRefPubMed
23.
go back to reference Zhu F, Qiu Y, Yeung HY, Lee KM, Cheng CY. Trabecular bone micro-architecture and bone mineral density in adolescent idiopathic and congenital scoliosis. Orthopaedic surgery. 2009;1:78–83.CrossRefPubMed Zhu F, Qiu Y, Yeung HY, Lee KM, Cheng CY. Trabecular bone micro-architecture and bone mineral density in adolescent idiopathic and congenital scoliosis. Orthopaedic surgery. 2009;1:78–83.CrossRefPubMed
24.
go back to reference Snyder AC, Woulfe T, Welsh R, Foster C. A simplified approach to estimating the maximal lactate steady state. Int J Sports Med. 1994;15:27–31.CrossRefPubMed Snyder AC, Woulfe T, Welsh R, Foster C. A simplified approach to estimating the maximal lactate steady state. Int J Sports Med. 1994;15:27–31.CrossRefPubMed
25.
go back to reference Snyder BD, Katz DA, Myers ER, Breitenbach MA, Emans JB. Bone density accumulation is not affected by brace treatment of idiopathic scoliosis in adolescent girls. J Pediatr Orthop. 2005;25:423–8.CrossRefPubMed Snyder BD, Katz DA, Myers ER, Breitenbach MA, Emans JB. Bone density accumulation is not affected by brace treatment of idiopathic scoliosis in adolescent girls. J Pediatr Orthop. 2005;25:423–8.CrossRefPubMed
26.
go back to reference Snyder BD, Zaltz I, Breitenbach MA, Kido TH, Myers ER, Emans JB. Does bracing affect bone density in adolescent scoliosis? Spine (Phila Pa 1976). 1995;20:1554–60.CrossRef Snyder BD, Zaltz I, Breitenbach MA, Kido TH, Myers ER, Emans JB. Does bracing affect bone density in adolescent scoliosis? Spine (Phila Pa 1976). 1995;20:1554–60.CrossRef
27.
go back to reference Sun X, Qiu Y, Zhu Z. The accumulation of bone mineral content and density in idiopathic scoliotic adolescents treated with bracing. Stud Health Technol Inform. 2006;123:233–8.PubMed Sun X, Qiu Y, Zhu Z. The accumulation of bone mineral content and density in idiopathic scoliotic adolescents treated with bracing. Stud Health Technol Inform. 2006;123:233–8.PubMed
28.
go back to reference Qiu Y, Sun X, Cheng JC, Zhu F, Li W, Zhu Z, et al. Bone mineral accrual in osteopenic and non-osteopenic girls with idiopathic scoliosis during bracing treatment. Spine (Phila Pa 1976). 2008;33:1682–9.CrossRef Qiu Y, Sun X, Cheng JC, Zhu F, Li W, Zhu Z, et al. Bone mineral accrual in osteopenic and non-osteopenic girls with idiopathic scoliosis during bracing treatment. Spine (Phila Pa 1976). 2008;33:1682–9.CrossRef
29.
go back to reference Courtois I, Collet P, Mouilleseaux B, Alexandre C. Bone mineral density at the femur and lumbar spine in a population of young women treated for scoliosis in adolescence. Rev Rhum Engl Ed. 1999;66:705–10.PubMed Courtois I, Collet P, Mouilleseaux B, Alexandre C. Bone mineral density at the femur and lumbar spine in a population of young women treated for scoliosis in adolescence. Rev Rhum Engl Ed. 1999;66:705–10.PubMed
30.
go back to reference Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone. 1994;15:279–84.CrossRefPubMed Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone. 1994;15:279–84.CrossRefPubMed
32.
go back to reference Sun Y, Roth DL, Ritchie CS, Burgio KL, Locher JL. Reliability and predictive validity of energy intake measures from the 24-hour dietary recalls of homebound older adults. J Am Diet Assoc. 2010;110:773–8.CrossRefPubMedPubMedCentral Sun Y, Roth DL, Ritchie CS, Burgio KL, Locher JL. Reliability and predictive validity of energy intake measures from the 24-hour dietary recalls of homebound older adults. J Am Diet Assoc. 2010;110:773–8.CrossRefPubMedPubMedCentral
33.
go back to reference Friedenreich CM, Courneya KS, Bryant HE. The lifetime total physical activity questionnaire: development and reliability. Med Sci Sports Exerc. 1998;30:266–74.CrossRefPubMed Friedenreich CM, Courneya KS, Bryant HE. The lifetime total physical activity questionnaire: development and reliability. Med Sci Sports Exerc. 1998;30:266–74.CrossRefPubMed
34.
go back to reference Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci. 1985;10:141–6.PubMed Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci. 1985;10:141–6.PubMed
35.
go back to reference Jacobs Jr DR, Ainsworth BE, Hartman TJ, Leon AS. A simultaneous evaluation of 10 commonly used physical activity questionnaires. Med Sci Sports Exerc. 1993;25:81–91.CrossRefPubMed Jacobs Jr DR, Ainsworth BE, Hartman TJ, Leon AS. A simultaneous evaluation of 10 commonly used physical activity questionnaires. Med Sci Sports Exerc. 1993;25:81–91.CrossRefPubMed
36.
go back to reference Tabachnick BG, Fidel LS. Using Multivariate Statistics. Boston: Pearson Education; 2013. Tabachnick BG, Fidel LS. Using Multivariate Statistics. Boston: Pearson Education; 2013.
37.
go back to reference Bailey DA. The Saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int J Sports Med. 1997;18 Suppl 3:S191–4.CrossRefPubMed Bailey DA. The Saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int J Sports Med. 1997;18 Suppl 3:S191–4.CrossRefPubMed
38.
go back to reference Bailey DA, Faulkner RA, McKay HA. Growth, physical activity and bone mineral acquisition. In: Holloszy JO, editor. Exercise and Sports Science Reviews, vol. 24. Baltimore: Williams & Wilkins; 1996. p. 233–66. Bailey DA, Faulkner RA, McKay HA. Growth, physical activity and bone mineral acquisition. In: Holloszy JO, editor. Exercise and Sports Science Reviews, vol. 24. Baltimore: Williams & Wilkins; 1996. p. 233–66.
39.
go back to reference Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston Jr CC. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991;6:1227–33.CrossRefPubMed Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston Jr CC. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991;6:1227–33.CrossRefPubMed
40.
go back to reference Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston Jr CC. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125:201–7.CrossRefPubMed Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston Jr CC. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125:201–7.CrossRefPubMed
41.
go back to reference Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12:1453–62.CrossRefPubMed Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12:1453–62.CrossRefPubMed
42.
go back to reference Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998;8:152–8.CrossRefPubMed Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998;8:152–8.CrossRefPubMed
43.
go back to reference Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.CrossRefPubMed Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.CrossRefPubMed
44.
go back to reference Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002;141:357–62.CrossRefPubMed Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002;141:357–62.CrossRefPubMed
45.
go back to reference Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. American College of Sports M. American college of sports medicine position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36:1985–96.CrossRefPubMed Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. American College of Sports M. American college of sports medicine position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36:1985–96.CrossRefPubMed
46.
go back to reference Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137:2507S–12.PubMed Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137:2507S–12.PubMed
47.
go back to reference Francis RM, Anderson FH, Patel S, Sahota O, van Staa TP. Calcium and vitamin D in the prevention of osteoporotic fractures. QJM. 2006;99:355–63.CrossRefPubMed Francis RM, Anderson FH, Patel S, Sahota O, van Staa TP. Calcium and vitamin D in the prevention of osteoporotic fractures. QJM. 2006;99:355–63.CrossRefPubMed
48.
go back to reference Whiting SJ, Vatanparast H, Baxter-Jones A, Faulkner RA, Mirwald R, Bailey DA. Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr. 2004;134:696S–700.PubMed Whiting SJ, Vatanparast H, Baxter-Jones A, Faulkner RA, Mirwald R, Bailey DA. Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr. 2004;134:696S–700.PubMed
49.
go back to reference Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15:2245–50.CrossRefPubMed Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15:2245–50.CrossRefPubMed
50.
go back to reference Hinriksdottir G, Arngrimsson SA, Misic MM, Evans EM. Lean soft tissue contributes more to bone health than fat mass independent of physical activity in women across the lifespan. Maturitas. 2013;74:264–9.CrossRefPubMed Hinriksdottir G, Arngrimsson SA, Misic MM, Evans EM. Lean soft tissue contributes more to bone health than fat mass independent of physical activity in women across the lifespan. Maturitas. 2013;74:264–9.CrossRefPubMed
51.
go back to reference Cheng JC, Sher HL, Guo X, Hung VW, Cheung AY. The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study. Hong Kong Med J. 2001;7:241–5.PubMed Cheng JC, Sher HL, Guo X, Hung VW, Cheung AY. The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study. Hong Kong Med J. 2001;7:241–5.PubMed
52.
go back to reference Girardi FP, Parvataneni HK, Sandhu HS, Cammisa Jr FP, Grewal H, Schneider R, et al. Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int. 2001;12:738–40.CrossRefPubMed Girardi FP, Parvataneni HK, Sandhu HS, Cammisa Jr FP, Grewal H, Schneider R, et al. Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int. 2001;12:738–40.CrossRefPubMed
53.
go back to reference Perilli E, Briggs AM, Kantor S, Codrington J, Wark JD, Parkinson IH, et al. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Bone. 2012;50:1416–25.CrossRefPubMed Perilli E, Briggs AM, Kantor S, Codrington J, Wark JD, Parkinson IH, et al. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Bone. 2012;50:1416–25.CrossRefPubMed
54.
go back to reference Falk B, Rigby WA, Akseer N. Adolescent idiopathic scoliosis: the possible harm of bracing and the likely benefit of exercise. Spine J. 2014;15:209–10.CrossRef Falk B, Rigby WA, Akseer N. Adolescent idiopathic scoliosis: the possible harm of bracing and the likely benefit of exercise. Spine J. 2014;15:209–10.CrossRef
55.
56.
go back to reference Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol. 2006;129:484–98.CrossRefPubMed Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol. 2006;129:484–98.CrossRefPubMed
57.
go back to reference Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact. 2006;6:122–7.PubMed Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact. 2006;6:122–7.PubMed
58.
go back to reference Martelli S, Kersh ME, Schache AG, Pandy MG. Strain energy in the femoral neck during exercise. J Biomech. 2014;47:1784–91.CrossRefPubMed Martelli S, Kersh ME, Schache AG, Pandy MG. Strain energy in the femoral neck during exercise. J Biomech. 2014;47:1784–91.CrossRefPubMed
59.
go back to reference Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone. 1995;17:205–10.CrossRefPubMed Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone. 1995;17:205–10.CrossRefPubMed
60.
go back to reference Johannsen N, Binkley T, Englert V, Neiderauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.CrossRefPubMed Johannsen N, Binkley T, Englert V, Neiderauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.CrossRefPubMed
61.
go back to reference Green BN, Johnson C, Moreau W. Is physical activity contraindicated for individuals with scoliosis? A systematic literature review. J Chiropr Med. 2009;8:25–37.CrossRefPubMedPubMedCentral Green BN, Johnson C, Moreau W. Is physical activity contraindicated for individuals with scoliosis? A systematic literature review. J Chiropr Med. 2009;8:25–37.CrossRefPubMedPubMedCentral
62.
go back to reference Bettany-Saltikov J, Parent E, Romano M, Villagrasa M, Negrini S. Physiotherapeutic scoliosis-specific exercises for adolescents with idiopathic scoliosis. Eur J Phys Rehabil Med. 2014;50:111–21.PubMed Bettany-Saltikov J, Parent E, Romano M, Villagrasa M, Negrini S. Physiotherapeutic scoliosis-specific exercises for adolescents with idiopathic scoliosis. Eur J Phys Rehabil Med. 2014;50:111–21.PubMed
Metadata
Title
Does bracing affect bone health in women with adolescent idiopathic scoliosis?
Authors
Nasreen Akseer
Kimberly Kish
W Alan Rigby
Matthew Greenway
Panagiota Klentrou
Philip M Wilson
Bareket Falk
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2015
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/s13013-015-0031-1

Other articles of this Issue 1/2015

Scoliosis and Spinal Disorders 1/2015 Go to the issue