Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Editorial

Doctor—your septic patients have scurvy!

Authors: Paul E. Marik, Michael H. Hooper

Published in: Critical Care | Issue 1/2018

Login to get access

Excerpt

Scurvy is a disease of antiquity described in Egyptian Hieroglyphics and responsible for the deaths of thousands of sailors during the Renaissance. Today, clinicians consider scurvy a very rare disease seen only in patients with extreme dietary deficiencies. They would undoubtedly be shocked to learn that about 40% of the patients in their ICU with septic shock have serum levels of vitamin C supporting a diagnosis of scurvy (<11.3 u/mol/l). The remainder of their patients with sepsis are likely to have hypovitaminosis C (serum level < 23 u/mol/l). Half of their nonseptic ICU patients also have hypovitaminosis C. These are the findings recently reported by Carr et al. [1]. Surprisingly, these astonishing observations are not new. It has been known for over two decades that acute illness results in an acute deficiency of vitamin C with low serum and intracellular levels [24]. Low plasma concentrations of vitamin C are associated with more severe organ failure and increased risk of mortality [5]. The most likely explanation for the acute vitamin C deficiency (acute scurvy) in patients with sepsis (and other critical illnesses) is a consequence of metabolic consumption [1]. The fall in serum and cellular levels occurs too rapidly to be explained by decreased gastrointestinal absorption or increased urinary losses. Indeed, in a guinea pig model, myocardial ascorbate was depleted within hours of endotoxin administration [6]. …
Literature
1.
go back to reference Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21:300.CrossRefPubMedPubMedCentral Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21:300.CrossRefPubMedPubMedCentral
2.
go back to reference Borrelli E, Roux-Lombard P, Grau GE, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med. 1996;24:392–7.CrossRefPubMed Borrelli E, Roux-Lombard P, Grau GE, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med. 1996;24:392–7.CrossRefPubMed
3.
go back to reference Victor VM, Guayerbas N, Puerto M, et al. Changes in the ascorbic acid levels of peritoneal lymphocytes and macrophages of mice with endotoxin-induced oxidative stress. Free Radic Res. 2001;35:907–16.CrossRefPubMed Victor VM, Guayerbas N, Puerto M, et al. Changes in the ascorbic acid levels of peritoneal lymphocytes and macrophages of mice with endotoxin-induced oxidative stress. Free Radic Res. 2001;35:907–16.CrossRefPubMed
4.
go back to reference Evans-Olders R, Eintracht S, Hoffer LJ. Metabolic origin of hypovitaminosis C in acutely hospitalized patients. Nutrition. 2010;26:1070–4.CrossRefPubMed Evans-Olders R, Eintracht S, Hoffer LJ. Metabolic origin of hypovitaminosis C in acutely hospitalized patients. Nutrition. 2010;26:1070–4.CrossRefPubMed
5.
go back to reference De Grooth HM, Spoeistra-de Man AM, Oudermans-van Straaten HM. Early plasma vitamin C concentration, organ dysfunction and ICU mortality. Intensive Care Med. 2014;40:S199. De Grooth HM, Spoeistra-de Man AM, Oudermans-van Straaten HM. Early plasma vitamin C concentration, organ dysfunction and ICU mortality. Intensive Care Med. 2014;40:S199.
6.
go back to reference Rojas C, Cadenas S, Herrero A, et al. Endotoxin depletes ascorbate in the guinea pig heart. Protective effects of vitamins C and E against oxidative stress. Life Sci. 1996;59:649–57.CrossRefPubMed Rojas C, Cadenas S, Herrero A, et al. Endotoxin depletes ascorbate in the guinea pig heart. Protective effects of vitamins C and E against oxidative stress. Life Sci. 1996;59:649–57.CrossRefPubMed
8.
go back to reference Fuller RN, Henson EC, Shannon EL, et al. Vitamin C deficiency and susceptibility to endotoxin shock in guinea pigs. Arch Pathol Lab Med. 1971;92:239–43. Fuller RN, Henson EC, Shannon EL, et al. Vitamin C deficiency and susceptibility to endotoxin shock in guinea pigs. Arch Pathol Lab Med. 1971;92:239–43.
9.
go back to reference Fisher BJ, Kraskauskas D, Martin EJ, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012;303:L20–32.CrossRefPubMed Fisher BJ, Kraskauskas D, Martin EJ, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012;303:L20–32.CrossRefPubMed
10.
go back to reference Fisher BJ, Kraskauskas D, Martin EJ, et al. Attenuation of sepsis-induced organ injury in mice by vitamin C. JPEN. 2014;38:825–39.CrossRef Fisher BJ, Kraskauskas D, Martin EJ, et al. Attenuation of sepsis-induced organ injury in mice by vitamin C. JPEN. 2014;38:825–39.CrossRef
12.
go back to reference Carcamo JM, Pedraza A, Borquez-Ojeda O, et al. Vitamin C suppresses TNF-alpha induced NFkB activation by inhibiting IkB-alpha phosphorylation. Biochem. 2002;41:12995–3002.CrossRef Carcamo JM, Pedraza A, Borquez-Ojeda O, et al. Vitamin C suppresses TNF-alpha induced NFkB activation by inhibiting IkB-alpha phosphorylation. Biochem. 2002;41:12995–3002.CrossRef
13.
go back to reference Carr AC, Shaw G, Fowler AA, et al. Ascorbate-dependent vasopressor synthesis—a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19:418.CrossRefPubMedPubMedCentral Carr AC, Shaw G, Fowler AA, et al. Ascorbate-dependent vasopressor synthesis—a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19:418.CrossRefPubMedPubMedCentral
14.
go back to reference Long CL, Maull KL, Krishman RS, et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res. 2003;109:144–8.CrossRefPubMed Long CL, Maull KL, Krishman RS, et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res. 2003;109:144–8.CrossRefPubMed
15.
go back to reference Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151:1229–38.CrossRefPubMed Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151:1229–38.CrossRefPubMed
16.
go back to reference Barabutis N, Khangoora V, Marik PE, et al. Hydrocortisone and ascorbic acid synergistically protect and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest. 2017;152:954–62.CrossRefPubMed Barabutis N, Khangoora V, Marik PE, et al. Hydrocortisone and ascorbic acid synergistically protect and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest. 2017;152:954–62.CrossRefPubMed
Metadata
Title
Doctor—your septic patients have scurvy!
Authors
Paul E. Marik
Michael H. Hooper
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-1950-z

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue