Skip to main content
Top
Published in: Lasers in Medical Science 4/2013

01-07-2013 | Original Article

DNA repair gene expression in biological tissues exposed to low-intensity infrared laser

Authors: Adenilson de Souza da Fonseca, Andre Luiz Mencalha, Vera Maria Araújo de Campos, Samara Cristina Ferreira Machado, Antonio Augusto de Freitas Peregrino, Mauro Geller, Flavia de Paoli

Published in: Lasers in Medical Science | Issue 4/2013

Login to get access

Abstract

Special properties of laser light have led to its usefulness in many applications in therapy. Excitation of endogenous chromophores in biotissues and generation of free radicals could be involved in its biological effects. DNA lesions induced by free radicals are repaired by base excision repair pathway. In this work, we evaluated the expression of APE1 and OGG1 genes related to repair of DNA lesions induced by free radicals. Skin and muscle tissues of Wistar rats were exposed to low-intensity infrared laser at different fluences and frequencies. After laser exposition of 1 and 24 h, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of APE1 and OGG1 gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of APE1 and OGG1 mRNA differently in skin and muscle tissues of Wistar rats depending of the fluence, frequency, and time after exposure. Our study suggests that low-intensity infrared laser affects expression of genes involved in repair of DNA lesions by base excision repair pathway.
Literature
1.
go back to reference Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef
2.
go back to reference Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, New York Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, New York
3.
go back to reference Arisu HD, Türköz E, Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180PubMedCrossRef Arisu HD, Türköz E, Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180PubMedCrossRef
4.
go back to reference Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S, Formigli L, Giannelli M (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539PubMedCrossRef Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S, Formigli L, Giannelli M (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539PubMedCrossRef
5.
go back to reference Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908PubMedCrossRef Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908PubMedCrossRef
6.
go back to reference Lagan KM, Clements BA, McDonough S, Baxter GD (2001) Low intensity laser therapy (830 nm) in the management of minor post surgical wounds: a controlled clinical study. Lasers Surg Med 28:27–32PubMedCrossRef Lagan KM, Clements BA, McDonough S, Baxter GD (2001) Low intensity laser therapy (830 nm) in the management of minor post surgical wounds: a controlled clinical study. Lasers Surg Med 28:27–32PubMedCrossRef
7.
go back to reference Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4PubMedCrossRef Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4PubMedCrossRef
8.
go back to reference Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325PubMedCrossRef Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325PubMedCrossRef
9.
go back to reference Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567PubMedCrossRef Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567PubMedCrossRef
10.
go back to reference Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314PubMedCrossRef Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314PubMedCrossRef
11.
go back to reference Hu W-P, Wang J-J, Yu C-L, Lan C-CE, Chen G-S, Yu H-S (2007) Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057CrossRef Hu W-P, Wang J-J, Yu C-L, Lan C-CE, Chen G-S, Yu H-S (2007) Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057CrossRef
12.
go back to reference Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26:321–326CrossRef Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26:321–326CrossRef
13.
go back to reference Maiya GA, Kumar P, Rao L (2005) Effect of low intensity helium–neon (He–Ne) laser irradiation on diabetic wound healing dynamics. Photomed Laser Surg 23:187–190PubMedCrossRef Maiya GA, Kumar P, Rao L (2005) Effect of low intensity helium–neon (He–Ne) laser irradiation on diabetic wound healing dynamics. Photomed Laser Surg 23:187–190PubMedCrossRef
14.
go back to reference Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98:211–215PubMedCrossRef Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98:211–215PubMedCrossRef
15.
go back to reference Omasa S, Motoyoshi M, Arai Y, Ejima K, Shimizu N (2012) Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 30:255–61PubMedCrossRef Omasa S, Motoyoshi M, Arai Y, Ejima K, Shimizu N (2012) Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 30:255–61PubMedCrossRef
16.
go back to reference Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526PubMedCrossRef Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526PubMedCrossRef
17.
go back to reference Pereira LB, Chimello DT, Ferreira MR, Bachmann L, Rosa AL, Bombonato-Prado KF (2012) Low-level laser therapy influences mouse odontoblast-like cell response in vitro. Photomed Laser Surg 30:206–213PubMedCrossRef Pereira LB, Chimello DT, Ferreira MR, Bachmann L, Rosa AL, Bombonato-Prado KF (2012) Low-level laser therapy influences mouse odontoblast-like cell response in vitro. Photomed Laser Surg 30:206–213PubMedCrossRef
18.
go back to reference Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2012) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci in press Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2012) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci in press
19.
go back to reference Hamajima S, Hiratsuka K, Kiyama-Kishikawa M, Tagawa T, Kawahara M, Ohta M, Sasahara H, Abiko Y (2003) Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18:78–82PubMedCrossRef Hamajima S, Hiratsuka K, Kiyama-Kishikawa M, Tagawa T, Kawahara M, Ohta M, Sasahara H, Abiko Y (2003) Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18:78–82PubMedCrossRef
20.
go back to reference Yazdani SO, Golestaneh AF, Shafiee A, Hafizi M, Omrani HA, Soleimani M (2012) Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human Schwann cells in vitro. J Photochem Photobiol B 107:9–13PubMedCrossRef Yazdani SO, Golestaneh AF, Shafiee A, Hafizi M, Omrani HA, Soleimani M (2012) Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human Schwann cells in vitro. J Photochem Photobiol B 107:9–13PubMedCrossRef
21.
go back to reference Zhang L, Zhao J, Kuboyama N, Abiko Y (2011) Low-level laser irradiation treatment reduces CCL2 expression in rat rheumatoid synovia via a chemokine signaling pathway. Lasers Med Sci 26:707–717PubMedCrossRef Zhang L, Zhao J, Kuboyama N, Abiko Y (2011) Low-level laser irradiation treatment reduces CCL2 expression in rat rheumatoid synovia via a chemokine signaling pathway. Lasers Med Sci 26:707–717PubMedCrossRef
22.
go back to reference Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340PubMedCrossRef Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340PubMedCrossRef
23.
go back to reference Joyce KM, Downes CS, Hannigan BM (1999) Radioadaptation in Indian muntjac fibroblast cells induced by low intensity laser irradiation. Mutat Res 435:35–42PubMedCrossRef Joyce KM, Downes CS, Hannigan BM (1999) Radioadaptation in Indian muntjac fibroblast cells induced by low intensity laser irradiation. Mutat Res 435:35–42PubMedCrossRef
24.
go back to reference Dube A, Bock C, Bauer E, Kohli R, Gupta PK (2001) He–Ne laser irradiation protects B-lymphoblasts from UVA-induced DNA damage. Radiat Environ Biophys 40:77–82PubMedCrossRef Dube A, Bock C, Bauer E, Kohli R, Gupta PK (2001) He–Ne laser irradiation protects B-lymphoblasts from UVA-induced DNA damage. Radiat Environ Biophys 40:77–82PubMedCrossRef
25.
go back to reference Zhang L, Hu Y (2002) Determination of laser-induced thymine–thymine dimer in DNA by LC. J Pharm Biomed Anal 29:95–102PubMedCrossRef Zhang L, Hu Y (2002) Determination of laser-induced thymine–thymine dimer in DNA by LC. J Pharm Biomed Anal 29:95–102PubMedCrossRef
26.
go back to reference Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 38:74–83PubMedCrossRef Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 38:74–83PubMedCrossRef
27.
go back to reference Kohli R, Gupta PK (2003) Irradiance dependence of He–Ne laser-induced protection against UVC radiation in E. coli strains. J Photochem Photobiol B: Biology 69:161–167PubMedCrossRef Kohli R, Gupta PK (2003) Irradiance dependence of He–Ne laser-induced protection against UVC radiation in E. coli strains. J Photochem Photobiol B: Biology 69:161–167PubMedCrossRef
28.
go back to reference Houreld NN, Abrahamse H (2007) Effectiveness of helium–neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25:474–481PubMedCrossRef Houreld NN, Abrahamse H (2007) Effectiveness of helium–neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25:474–481PubMedCrossRef
29.
go back to reference Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, Paoli S, Geller M, Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488PubMedCrossRef Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, Paoli S, Geller M, Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488PubMedCrossRef
30.
go back to reference Fonseca AS, Geller M, Valença SS, Paoli F (2012) Low level infrared laser effect on plasmid DNA. Lasers Med Sci 27:121–130PubMedCrossRef Fonseca AS, Geller M, Valença SS, Paoli F (2012) Low level infrared laser effect on plasmid DNA. Lasers Med Sci 27:121–130PubMedCrossRef
31.
go back to reference Fonseca AS, Presta GA, Geller M, Paoli F, Valença SS (2012) Low-intensity infrared laser increases plasma proteins and induces oxidative stress in vitro. Lasers Med Sci 27:211–217CrossRef Fonseca AS, Presta GA, Geller M, Paoli F, Valença SS (2012) Low-intensity infrared laser increases plasma proteins and induces oxidative stress in vitro. Lasers Med Sci 27:211–217CrossRef
32.
go back to reference Zhang Y, Song S, Fong C-C, Tsang C-H, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 120:849–857PubMedCrossRef Zhang Y, Song S, Fong C-C, Tsang C-H, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 120:849–857PubMedCrossRef
33.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRef
34.
go back to reference Strauss PR, O'Regan NE (2001) Abasic site repair in higher eukaryotes. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair: vol. 3: advances from phage to humans. Human Press, Totowa, pp 43–85CrossRef Strauss PR, O'Regan NE (2001) Abasic site repair in higher eukaryotes. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair: vol. 3: advances from phage to humans. Human Press, Totowa, pp 43–85CrossRef
35.
go back to reference An N, Fleming AM, White HS, Burrows CJ (2012) Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci USA 109:11504–11509PubMedCrossRef An N, Fleming AM, White HS, Burrows CJ (2012) Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci USA 109:11504–11509PubMedCrossRef
36.
37.
go back to reference Klein HL, Hoot S (2011) Repair systems. In: Krebs JE, Goldstein ES, Kilpatrick ST (eds) Lewin's genes X. Jones and Bartlett, Sudbury Klein HL, Hoot S (2011) Repair systems. In: Krebs JE, Goldstein ES, Kilpatrick ST (eds) Lewin's genes X. Jones and Bartlett, Sudbury
38.
go back to reference Mitra S, Hazra TK, Roy R, Ikeda S, Biswas T, Lock J, Boldogh I, Izumi T (1997) Complexities of DNA base excision repair in mammalian cells. Mol Cells 7:305–312PubMed Mitra S, Hazra TK, Roy R, Ikeda S, Biswas T, Lock J, Boldogh I, Izumi T (1997) Complexities of DNA base excision repair in mammalian cells. Mol Cells 7:305–312PubMed
39.
go back to reference Ramana CV, Boldogh I, Izumi T, Mitra S (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxic of free radicals. Proc Natl Acad Sci USA 95:5061–5066PubMedCrossRef Ramana CV, Boldogh I, Izumi T, Mitra S (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxic of free radicals. Proc Natl Acad Sci USA 95:5061–5066PubMedCrossRef
40.
go back to reference Bjoras M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J 16:6314–6322PubMedCrossRef Bjoras M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J 16:6314–6322PubMedCrossRef
41.
go back to reference Bigot K, Leemput J, Vacher M, Campalans A, Radicella JP, Lacassagne E, Provost A, Masson C, Menasche M, Abitbol M (2009) Expression of 8-oxoguanine DNA glycosylase (Ogg1) in mouse retina. Mol Vision 15:1139–1152 Bigot K, Leemput J, Vacher M, Campalans A, Radicella JP, Lacassagne E, Provost A, Masson C, Menasche M, Abitbol M (2009) Expression of 8-oxoguanine DNA glycosylase (Ogg1) in mouse retina. Mol Vision 15:1139–1152
42.
go back to reference Fonseca AS, Presta GA, Geller M, Paoli F (2011) Low intensity infrared laser induces filamentation in Escherichia coli cells. Laser Phys 21:1829–1837CrossRef Fonseca AS, Presta GA, Geller M, Paoli F (2011) Low intensity infrared laser induces filamentation in Escherichia coli cells. Laser Phys 21:1829–1837CrossRef
43.
go back to reference Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261PubMedCrossRef Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261PubMedCrossRef
44.
go back to reference Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRef Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRef
45.
go back to reference Tirlapur UK, Konig K, Peuckert C, Krieg R, Halbhuber K (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Res 263:88–97PubMedCrossRef Tirlapur UK, Konig K, Peuckert C, Krieg R, Halbhuber K (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Res 263:88–97PubMedCrossRef
46.
go back to reference Fonseca AS, Teixeira AF, Presta GA, Geller M, Valença SS, Paoli F (2012) Low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA. Laser Phys in press Fonseca AS, Teixeira AF, Presta GA, Geller M, Valença SS, Paoli F (2012) Low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA. Laser Phys in press
47.
go back to reference Avni D, Levkovitz S, Maltz L, Oron U (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277PubMedCrossRef Avni D, Levkovitz S, Maltz L, Oron U (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277PubMedCrossRef
48.
go back to reference Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92:144–152PubMedCrossRef Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92:144–152PubMedCrossRef
49.
go back to reference Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37PubMedCrossRef Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37PubMedCrossRef
50.
go back to reference Kim YG (2002) Laser mediated production of reactive oxygen and nitrogen species; implications for therapy. Free Rad Res 36:1243–1250CrossRef Kim YG (2002) Laser mediated production of reactive oxygen and nitrogen species; implications for therapy. Free Rad Res 36:1243–1250CrossRef
51.
go back to reference Karu T, Pyatibrat L, Kalendo G (1994) Irradiation with HeNe laser can influence the cytotoxic response of HeLa cells to ionizing radiation. Int J Radiat Biol 65:691–697PubMedCrossRef Karu T, Pyatibrat L, Kalendo G (1994) Irradiation with HeNe laser can influence the cytotoxic response of HeLa cells to ionizing radiation. Int J Radiat Biol 65:691–697PubMedCrossRef
52.
go back to reference Andrade AC, Chrysis D, Audi L, Nilsson O (2011) Methods to study cartilage and bone development. Endocr Dev 21:52–66PubMedCrossRef Andrade AC, Chrysis D, Audi L, Nilsson O (2011) Methods to study cartilage and bone development. Endocr Dev 21:52–66PubMedCrossRef
53.
go back to reference Wesolowski R, Ramaswamy B (2011) Gene expression profiling: changing face of breast cancer classification and management. Gene Expr 15:105–115PubMedCrossRef Wesolowski R, Ramaswamy B (2011) Gene expression profiling: changing face of breast cancer classification and management. Gene Expr 15:105–115PubMedCrossRef
54.
go back to reference Wu FR, Ding B, Qi B, Shang MB, Yang XX, Liu Y, Li WY (2012) Sequence analysis, expression patterns and transcriptional regulation of mouse Ifrg15 during preimplantation embryonic development. Gene in press Wu FR, Ding B, Qi B, Shang MB, Yang XX, Liu Y, Li WY (2012) Sequence analysis, expression patterns and transcriptional regulation of mouse Ifrg15 during preimplantation embryonic development. Gene in press
Metadata
Title
DNA repair gene expression in biological tissues exposed to low-intensity infrared laser
Authors
Adenilson de Souza da Fonseca
Andre Luiz Mencalha
Vera Maria Araújo de Campos
Samara Cristina Ferreira Machado
Antonio Augusto de Freitas Peregrino
Mauro Geller
Flavia de Paoli
Publication date
01-07-2013
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 4/2013
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1191-3

Other articles of this Issue 4/2013

Lasers in Medical Science 4/2013 Go to the issue