Skip to main content
Top
Published in: Basic Research in Cardiology 1/2016

01-01-2016 | Original Contribution

DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors

Authors: Justus Stenzig, Marc N. Hirt, Alexandra Löser, Lena M. Bartholdt, Jan-Tobias Hensel, Tessa R. Werner, Mona Riemenschneider, Daniela Indenbirken, Thomas Guenther, Christian Müller, Norbert Hübner, Monika Stoll, Thomas Eschenhagen

Published in: Basic Research in Cardiology | Issue 1/2016

Login to get access

Abstract

DNA methylation affects transcriptional regulation and constitutes a drug target in cancer biology. In cardiac hypertrophy, DNA methylation may control the fetal gene program. We therefore investigated DNA methylation signatures and their dynamics in an in vitro model of cardiac hypertrophy based on engineered heart tissue (EHT). We exposed EHTs from neonatal rat cardiomyocytes to a 12-fold increased afterload (AE) or to phenylephrine (PE 20 µM) and compared DNA methylation signatures to control EHT by pull-down assay and DNA methylation microarray. A 7-day intervention sufficed to induce contractile dysfunction and significantly decrease promoter methylation of hypertrophy-associated upregulated genes such as Nppa (encoding ANP) and Acta1 (α-skeletal actin) in both intervention groups. To evaluate whether pathological consequences of AE are affected by inhibiting de novo DNA methylation we applied AE in the absence and presence of DNA methyltransferase (DNMT) inhibitors: 5-aza-2′-deoxycytidine (aza, 100 µM, nucleosidic inhibitor), RG108 (60 µM, non-nucleosidic) or methylene disalicylic acid (MDSA, 25 µM, non-nucleosidic). Aza had no effect on EHT function, but RG108 and MDSA partially prevented the detrimental consequences of AE on force, contraction and relaxation velocity. RG108 reduced AE-induced Atp2a2 (SERCA2a) promoter methylation. The results provide evidence for dynamic DNA methylation in cardiac hypertrophy and warrant further investigation of the potential of DNA methylation in the treatment of cardiac hypertrophy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adriaens ME, Jaillard M, Eijssen LM, Mayer CD, Evelo CT (2012) An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genom 13:42. doi:10.1186/1471-2164-13-42 CrossRef Adriaens ME, Jaillard M, Eijssen LM, Mayer CD, Evelo CT (2012) An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genom 13:42. doi:10.​1186/​1471-2164-13-42 CrossRef
2.
go back to reference Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D (2014) Synthesis and evaluation of analogues of N-phthaloyl-l-tryptophan (RG108) as inhibitors of DNA methyltransferase 1. J Med Chem 57:421–434. doi:10.1021/jm401419p PubMedCrossRef Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D (2014) Synthesis and evaluation of analogues of N-phthaloyl-l-tryptophan (RG108) as inhibitors of DNA methyltransferase 1. J Med Chem 57:421–434. doi:10.​1021/​jm401419p PubMedCrossRef
6.
go back to reference Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, Witteman JC, Stricker BH (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 25:1614–1619. doi:10.1016/j.ehj.2004.06.038 PubMedCrossRef Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, Witteman JC, Stricker BH (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 25:1614–1619. doi:10.​1016/​j.​ehj.​2004.​06.​038 PubMedCrossRef
8.
go back to reference Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311. doi:10.1158/0008-5472.CAN-04-2957 PubMedCrossRef Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311. doi:10.​1158/​0008-5472.​CAN-04-2957 PubMedCrossRef
9.
11.
go back to reference Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11:683–694PubMed Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11:683–694PubMed
13.
go back to reference Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M (2003) The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31:1765–1774PubMedPubMedCentralCrossRef Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M (2003) The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31:1765–1774PubMedPubMedCentralCrossRef
14.
go back to reference Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. doi:10.1038/ncomms6288 PubMedPubMedCentralCrossRef Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. doi:10.​1038/​ncomms6288 PubMedPubMedCentralCrossRef
16.
go back to reference Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA, Rudy JJ, Wagner K, Hajjar RJ (2014) Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail 2:84–92. doi:10.1016/j.jchf.2013.09.008 PubMedCrossRef Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA, Rudy JJ, Wagner K, Hajjar RJ (2014) Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail 2:84–92. doi:10.​1016/​j.​jchf.​2013.​09.​008 PubMedCrossRef
17.
go back to reference Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. doi:10.1002/emmm.201201553 PubMedPubMedCentral Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. doi:10.​1002/​emmm.​201201553 PubMedPubMedCentral
20.
go back to reference Hirt MN, Sorensen NA, Bartholdt LM, Boeddinghaus J, Schaaf S, Eder A, Vollert I, Stohr A, Schulze T, Witten A, Stoll M, Hansen A, Eschenhagen T (2012) Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Res Cardiol 107:307. doi:10.1007/s00395-012-0307-z PubMedPubMedCentralCrossRef Hirt MN, Sorensen NA, Bartholdt LM, Boeddinghaus J, Schaaf S, Eder A, Vollert I, Stohr A, Schulze T, Witten A, Stoll M, Hansen A, Eschenhagen T (2012) Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Res Cardiol 107:307. doi:10.​1007/​s00395-012-0307-z PubMedPubMedCentralCrossRef
21.
go back to reference Hirt MN, Werner T, Indenbirken D, Alawi M, Demin P, Kunze AC, Stenzig J, Starbatty J, Hansen A, Fiedler J, Thum T, Eschenhagen T (2015) Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J Mol Cell Cardiol 81:1–9. doi:10.1016/j.yjmcc.2015.01.008 PubMedCrossRef Hirt MN, Werner T, Indenbirken D, Alawi M, Demin P, Kunze AC, Stenzig J, Starbatty J, Hansen A, Fiedler J, Thum T, Eschenhagen T (2015) Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J Mol Cell Cardiol 81:1–9. doi:10.​1016/​j.​yjmcc.​2015.​01.​008 PubMedCrossRef
24.
27.
29.
go back to reference Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183–4195PubMedPubMedCentralCrossRef Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183–4195PubMedPubMedCentralCrossRef
32.
go back to reference Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, Wolfel EE, Lindenfeld J, Tsvetkova T, Robertson AD, Quaife RA, Bristow MR (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346:1357–1365. doi:10.1056/NEJMoa012630 PubMedCrossRef Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, Wolfel EE, Lindenfeld J, Tsvetkova T, Robertson AD, Quaife RA, Bristow MR (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346:1357–1365. doi:10.​1056/​NEJMoa012630 PubMedCrossRef
33.
go back to reference Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142. doi:10.1038/nbt.2726 PubMedPubMedCentralCrossRef Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142. doi:10.​1038/​nbt.​2726 PubMedPubMedCentralCrossRef
35.
go back to reference Murakami T, Li X, Gong J, Bhatia U, Traganos F, Darzynkiewicz Z (1995) Induction of apoptosis by 5-azacytidine: drug concentration-dependent differences in cell cycle specificity. Cancer Res 55:3093–3098PubMed Murakami T, Li X, Gong J, Bhatia U, Traganos F, Darzynkiewicz Z (1995) Induction of apoptosis by 5-azacytidine: drug concentration-dependent differences in cell cycle specificity. Cancer Res 55:3093–3098PubMed
36.
go back to reference Nakagawa O, Ogawa Y, Itoh H, Suga S, Komatsu Y, Kishimoto I, Nishino K, Yoshimasa T, Nakao K (1995) Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 96:1280–1287. doi:10.1172/JCI118162 PubMedPubMedCentralCrossRef Nakagawa O, Ogawa Y, Itoh H, Suga S, Komatsu Y, Kishimoto I, Nishino K, Yoshimasa T, Nakao K (1995) Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 96:1280–1287. doi:10.​1172/​JCI118162 PubMedPubMedCentralCrossRef
39.
41.
42.
go back to reference Ohtani T, Mano T, Hikoso S, Sakata Y, Nishio M, Takeda Y, Otsu K, Miwa T, Masuyama T, Hori M, Yamamoto K (2009) Cardiac steroidogenesis and glucocorticoid in the development of cardiac hypertrophy during the progression to heart failure. J Hypertens 27:1074–1083. doi:10.1097/HJH.0b013e328326cb04 PubMedCrossRef Ohtani T, Mano T, Hikoso S, Sakata Y, Nishio M, Takeda Y, Otsu K, Miwa T, Masuyama T, Hori M, Yamamoto K (2009) Cardiac steroidogenesis and glucocorticoid in the development of cardiac hypertrophy during the progression to heart failure. J Hypertens 27:1074–1083. doi:10.​1097/​HJH.​0b013e328326cb04​ PubMedCrossRef
45.
go back to reference Rauch T, Li H, Wu X, Pfeifer GP (2006) MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 66:7939–7947. doi:10.1158/0008-5472.CAN-06-1888 PubMedCrossRef Rauch T, Li H, Wu X, Pfeifer GP (2006) MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 66:7939–7947. doi:10.​1158/​0008-5472.​CAN-06-1888 PubMedCrossRef
47.
go back to reference Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedCrossRef Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedCrossRef
48.
go back to reference Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, Acuna C, Salazar AM, Lizano M, Duenas-Gonzalez A (2003) Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 9:1596–1603PubMed Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, Acuna C, Salazar AM, Lizano M, Duenas-Gonzalez A (2003) Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 9:1596–1603PubMed
49.
go back to reference Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495. doi:10.1038/nature10716 PubMed Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495. doi:10.​1038/​nature10716 PubMed
52.
go back to reference Vollert I, Seiffert M, Bachmair J, Sander M, Eder A, Conradi L, Vogelsang A, Schulze T, Uebeler J, Holnthoner W, Redl H, Reichenspurner H, Hansen A, Eschenhagen T (2014) In vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Eng Part A 20:854–863. doi:10.1089/ten.TEA.2013.0214 PubMed Vollert I, Seiffert M, Bachmair J, Sander M, Eder A, Conradi L, Vogelsang A, Schulze T, Uebeler J, Holnthoner W, Redl H, Reichenspurner H, Hansen A, Eschenhagen T (2014) In vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Eng Part A 20:854–863. doi:10.​1089/​ten.​TEA.​2013.​0214 PubMed
53.
go back to reference Vujic A, Robinson EL, Ito M, Haider S, Ackers-Johnson M, See K, Methner C, Figg N, Brien P, Roderick HL, Skepper J, Ferguson-Smith A, Foo RS (2015) Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J Mol Cell Cardiol 82:174–183. doi:10.1016/j.yjmcc.2015.03.007 PubMedCrossRef Vujic A, Robinson EL, Ito M, Haider S, Ackers-Johnson M, See K, Methner C, Figg N, Brien P, Roderick HL, Skepper J, Ferguson-Smith A, Foo RS (2015) Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J Mol Cell Cardiol 82:174–183. doi:10.​1016/​j.​yjmcc.​2015.​03.​007 PubMedCrossRef
54.
go back to reference Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, McDonald K, Ledwidge M, Baugh J (2015) Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. doi:10.1177/1074248415591698 Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, McDonald K, Ledwidge M, Baugh J (2015) Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. doi:10.​1177/​1074248415591698​
55.
go back to reference WHO (2013) WHO fact sheet No. 317 cardiovascular diseases (CVDs). World Health Organization WHO (2013) WHO fact sheet No. 317 cardiovascular diseases (CVDs). World Health Organization
57.
go back to reference Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, Zhang L (2013) Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res. doi:10.1093/cvr/cvt264 Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, Zhang L (2013) Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res. doi:10.​1093/​cvr/​cvt264
58.
go back to reference Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201. doi:10.1016/j.cell.2006.08.003 PubMedCrossRef Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201. doi:10.​1016/​j.​cell.​2006.​08.​003 PubMedCrossRef
Metadata
Title
DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors
Authors
Justus Stenzig
Marc N. Hirt
Alexandra Löser
Lena M. Bartholdt
Jan-Tobias Hensel
Tessa R. Werner
Mona Riemenschneider
Daniela Indenbirken
Thomas Guenther
Christian Müller
Norbert Hübner
Monika Stoll
Thomas Eschenhagen
Publication date
01-01-2016
Publisher
Springer Berlin Heidelberg
Published in
Basic Research in Cardiology / Issue 1/2016
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-015-0528-z

Other articles of this Issue 1/2016

Basic Research in Cardiology 1/2016 Go to the issue