Skip to main content
Top

Open Access 11-05-2024 | Original Paper

Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium

Authors: Jilai Zhao, Laura Sormani, Sebastien Jacquelin, Haiming Li, Cassandra Styke, Chenhao Zhou, Jonathan Beesley, Linus Oon, Simranpreet Kaur, Seen-Ling Sim, Ho Yi Wong, James Dight, Ghazaleh Hashemi, Abbas Shafiee, Edwige Roy, Jatin Patel, Kiarash Khosrotehrani

Published in: Angiogenesis

Login to get access

Abstract

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor’s self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banno K, Yoder MC (2018) Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 83:283–290PubMedCrossRef Banno K, Yoder MC (2018) Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 83:283–290PubMedCrossRef
2.
go back to reference Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J (2021) Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J (2021) Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis
3.
go back to reference Patel J, Seppanen E, Chong MS, Yeo JS, Teo EY, Chan JK, Fisk NM, Khosrotehrani K (2013) Prospective surface marker-based isolation and expansion of fetal endothelial colony-forming cells from human term placenta. Stem Cells Transl Med 2:839–847PubMedPubMedCentralCrossRef Patel J, Seppanen E, Chong MS, Yeo JS, Teo EY, Chan JK, Fisk NM, Khosrotehrani K (2013) Prospective surface marker-based isolation and expansion of fetal endothelial colony-forming cells from human term placenta. Stem Cells Transl Med 2:839–847PubMedPubMedCentralCrossRef
4.
go back to reference Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786PubMedCrossRef Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786PubMedCrossRef
5.
go back to reference Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMedPubMedCentralCrossRef Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMedPubMedCentralCrossRef
6.
go back to reference Lin Y, Banno K, Gil CH, Myslinski J, Hato T, Shelley WC, Gao H, Xuei X, Liu Y, Basile DP, Yoshimoto M, Prasain N, Tarnawsky SP, Adams RH, Naruse K, Yoshida J, Murphy MP (2023) Horie K and Yoder MC. Origin, prospective identification, and function of circulating endothelial colony-forming cells in mice and humans. JCI Insight. ;8 Lin Y, Banno K, Gil CH, Myslinski J, Hato T, Shelley WC, Gao H, Xuei X, Liu Y, Basile DP, Yoshimoto M, Prasain N, Tarnawsky SP, Adams RH, Naruse K, Yoshida J, Murphy MP (2023) Horie K and Yoder MC. Origin, prospective identification, and function of circulating endothelial colony-forming cells in mice and humans. JCI Insight. ;8
7.
go back to reference Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M, Khosrotehrani K (2017) Functional definition of progenitors Versus mature endothelial cells reveals key SoxF-Dependent differentiation process. Circulation 135:786–805PubMedCrossRef Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M, Khosrotehrani K (2017) Functional definition of progenitors Versus mature endothelial cells reveals key SoxF-Dependent differentiation process. Circulation 135:786–805PubMedCrossRef
8.
go back to reference Xu Y, Kovacic JC (2023) Endothelial to Mesenchymal Transition in Health and Disease. Annu Rev Physiol 85:245–267PubMedCrossRef Xu Y, Kovacic JC (2023) Endothelial to Mesenchymal Transition in Health and Disease. Annu Rev Physiol 85:245–267PubMedCrossRef
9.
go back to reference Patel J, Baz B, Wong HY, Lee JS, Khosrotehrani K (2018) Accelerated endothelial to mesenchymal transition increased fibrosis via deleting Notch Signaling in Wound vasculature. J Invest Dermatol 138:1166–1175PubMedCrossRef Patel J, Baz B, Wong HY, Lee JS, Khosrotehrani K (2018) Accelerated endothelial to mesenchymal transition increased fibrosis via deleting Notch Signaling in Wound vasculature. J Invest Dermatol 138:1166–1175PubMedCrossRef
10.
go back to reference Zhao J, Patel J, Kaur S, Sim S-L, Wong HY, Styke C, Hogan I, Kahler S, Hamilton H, Wadlow R, Dight J, Hashemi G, Sormani L, Roy E, Yoder MC, Francois M, Khosrotehrani K (2021) Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat Commun 12:2564PubMedPubMedCentralCrossRef Zhao J, Patel J, Kaur S, Sim S-L, Wong HY, Styke C, Hogan I, Kahler S, Hamilton H, Wadlow R, Dight J, Hashemi G, Sormani L, Roy E, Yoder MC, Francois M, Khosrotehrani K (2021) Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat Commun 12:2564PubMedPubMedCentralCrossRef
11.
go back to reference Nano R, Sim SL, Shafiee A, Khosrotehrani K, Patel J (2022) High-yield isolation of pure fetal endothelial colony forming cells and mesenchymal stem cells from the human full-term placenta. STAR Protoc 3:101354PubMedPubMedCentralCrossRef Nano R, Sim SL, Shafiee A, Khosrotehrani K, Patel J (2022) High-yield isolation of pure fetal endothelial colony forming cells and mesenchymal stem cells from the human full-term placenta. STAR Protoc 3:101354PubMedPubMedCentralCrossRef
12.
13.
go back to reference Su Q, Sun Y, Ye Z, Yang H, Li L (2018) Oxidized low density lipoprotein induces endothelial-to-mesenchymal transition by stabilizing snail in human aortic endothelial cells. Biomed Pharmacother 106:1720–1726PubMedCrossRef Su Q, Sun Y, Ye Z, Yang H, Li L (2018) Oxidized low density lipoprotein induces endothelial-to-mesenchymal transition by stabilizing snail in human aortic endothelial cells. Biomed Pharmacother 106:1720–1726PubMedCrossRef
14.
go back to reference Jia W, Wang Z, Gao C, Wu J, Wu Q (2021) Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis 12:327PubMedPubMedCentralCrossRef Jia W, Wang Z, Gao C, Wu J, Wu Q (2021) Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis 12:327PubMedPubMedCentralCrossRef
15.
go back to reference Pinto MT, Ferreira Melo FU, Malta TM, Rodrigues ES, Plaça JR, Silva WA Jr., Panepucci RA, Covas DT, de Oliveira Rodrigues C, Kashima S (2018) Endothelial cells from different anatomical origin have distinct responses during SNAIL/TGF-β2-mediated endothelial-mesenchymal transition. Am J Transl Res 10:4065–4081PubMedPubMedCentral Pinto MT, Ferreira Melo FU, Malta TM, Rodrigues ES, Plaça JR, Silva WA Jr., Panepucci RA, Covas DT, de Oliveira Rodrigues C, Kashima S (2018) Endothelial cells from different anatomical origin have distinct responses during SNAIL/TGF-β2-mediated endothelial-mesenchymal transition. Am J Transl Res 10:4065–4081PubMedPubMedCentral
16.
go back to reference Chen P-Y, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone NA, Kauffman KJ, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson DG, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz MA, Pober JS, Chittenden TW (2019) Tellides G and Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat Metabolism 1:912–926CrossRef Chen P-Y, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone NA, Kauffman KJ, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson DG, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz MA, Pober JS, Chittenden TW (2019) Tellides G and Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat Metabolism 1:912–926CrossRef
17.
go back to reference Cooley BC, Nevado J, Mellad J, Yang D, St Hilaire C, Negro A, Fang F, Chen G, San H, Walts AD, Schwartzbeck RL, Taylor B, Lanzer JD, Wragg A, Elagha A, Beltran LE, Berry C, Feil R, Virmani R, Ladich E, Kovacic JC, Boehm M (2014) TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6:227ra34–227ra34PubMedPubMedCentralCrossRef Cooley BC, Nevado J, Mellad J, Yang D, St Hilaire C, Negro A, Fang F, Chen G, San H, Walts AD, Schwartzbeck RL, Taylor B, Lanzer JD, Wragg A, Elagha A, Beltran LE, Berry C, Feil R, Virmani R, Ladich E, Kovacic JC, Boehm M (2014) TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6:227ra34–227ra34PubMedPubMedCentralCrossRef
18.
go back to reference Chen H, Li D, Saldeen T, Mehta JL (2001) Transforming growth factor-beta(1) modulates oxidatively modified LDL-induced expression of adhesion molecules: role of LOX-1. Circ Res 89:1155–1160PubMedCrossRef Chen H, Li D, Saldeen T, Mehta JL (2001) Transforming growth factor-beta(1) modulates oxidatively modified LDL-induced expression of adhesion molecules: role of LOX-1. Circ Res 89:1155–1160PubMedCrossRef
19.
go back to reference Shafiee A, Patel J, Hutmacher DW, Fisk NM, Khosrotehrani K (2018) Meso-Endothelial Bipotent progenitors from Human Placenta Display distinct Molecular and Cellular Identity. Stem Cell Rep 10:890–904CrossRef Shafiee A, Patel J, Hutmacher DW, Fisk NM, Khosrotehrani K (2018) Meso-Endothelial Bipotent progenitors from Human Placenta Display distinct Molecular and Cellular Identity. Stem Cell Rep 10:890–904CrossRef
20.
go back to reference Donovan P, Patel J, Dight J, Wong HY, Sim SL, Murigneux V, Francois M, Khosrotehrani K (2019) Endovascular progenitors infiltrate melanomas and differentiate towards a variety of vascular beds promoting tumor metastasis. Nat Commun 10:18PubMedPubMedCentralCrossRef Donovan P, Patel J, Dight J, Wong HY, Sim SL, Murigneux V, Francois M, Khosrotehrani K (2019) Endovascular progenitors infiltrate melanomas and differentiate towards a variety of vascular beds promoting tumor metastasis. Nat Commun 10:18PubMedPubMedCentralCrossRef
21.
go back to reference Lukowski SW, Patel J, Andersen SB, Sim SL, Wong HY, Tay J, Winkler I, Powell JE, Khosrotehrani K (2019) Single-cell transcriptional profiling of aortic endothelium identifies a Hierarchy from Endovascular progenitors to differentiated cells. Cell Rep 27:2748–2758e3PubMedCrossRef Lukowski SW, Patel J, Andersen SB, Sim SL, Wong HY, Tay J, Winkler I, Powell JE, Khosrotehrani K (2019) Single-cell transcriptional profiling of aortic endothelium identifies a Hierarchy from Endovascular progenitors to differentiated cells. Cell Rep 27:2748–2758e3PubMedCrossRef
22.
go back to reference Patel J, Donovan P, Khosrotehrani K (2016) Concise Review: functional definition of endothelial progenitor cells: a molecular perspective. Stem Cells Transl Med 5:1302–1306PubMedPubMedCentralCrossRef Patel J, Donovan P, Khosrotehrani K (2016) Concise Review: functional definition of endothelial progenitor cells: a molecular perspective. Stem Cells Transl Med 5:1302–1306PubMedPubMedCentralCrossRef
23.
go back to reference Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR, d’Escamard V, Li JR, Hadri L, Fujitani K, Moreno PR, Benard L, Rimmele P, Cohain A, Mecham B, Randolph GJ, Nabel EG, Hajjar R, Fuster V, Boehm M, Kovacic JC (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853PubMedPubMedCentralCrossRef Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR, d’Escamard V, Li JR, Hadri L, Fujitani K, Moreno PR, Benard L, Rimmele P, Cohain A, Mecham B, Randolph GJ, Nabel EG, Hajjar R, Fuster V, Boehm M, Kovacic JC (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853PubMedPubMedCentralCrossRef
24.
go back to reference Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH (2019) Endothelial to mesenchymal transition in Cardiovascular Disease: JACC State-of-the-art review. J Am Coll Cardiol 73:190–209PubMedPubMedCentralCrossRef Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH (2019) Endothelial to mesenchymal transition in Cardiovascular Disease: JACC State-of-the-art review. J Am Coll Cardiol 73:190–209PubMedPubMedCentralCrossRef
25.
go back to reference Moonen J-RAJ, Krenning G, Brinker MGL, Koerts JA, van Luyn MJA, Harmsen MC (2010) Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovascular Res 86:506–515CrossRef Moonen J-RAJ, Krenning G, Brinker MGL, Koerts JA, van Luyn MJA, Harmsen MC (2010) Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovascular Res 86:506–515CrossRef
26.
go back to reference Wang Z, Han Z, Tao J, Wang J, Liu X, Zhou W, Xu Z, Zhao C, Wang Z, Tan R, Gu M (2017) Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 21:2359–2369PubMedPubMedCentralCrossRef Wang Z, Han Z, Tao J, Wang J, Liu X, Zhou W, Xu Z, Zhao C, Wang Z, Tan R, Gu M (2017) Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 21:2359–2369PubMedPubMedCentralCrossRef
27.
go back to reference Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961PubMedCrossRef Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961PubMedCrossRef
28.
go back to reference Choi S-H, Kim AR, Nam J-K, Kim J-M, Kim J-Y, Seo HR, Lee H-J, Cho J, Lee Y-J (2018) Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6 + cancer cell and macrophage polarization. Nat Commun 9:5108PubMedPubMedCentralCrossRef Choi S-H, Kim AR, Nam J-K, Kim J-M, Kim J-Y, Seo HR, Lee H-J, Cho J, Lee Y-J (2018) Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6 + cancer cell and macrophage polarization. Nat Commun 9:5108PubMedPubMedCentralCrossRef
29.
go back to reference Suzuki T, Carrier EJ, Talati MH, Rathinasabapathy A, Chen X, Nishimura R, Tada Y, Tatsumi K, West J (2017) Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. Am J Physiology-Lung Cell Mol Physiol 314:L118–L126CrossRef Suzuki T, Carrier EJ, Talati MH, Rathinasabapathy A, Chen X, Nishimura R, Tada Y, Tatsumi K, West J (2017) Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. Am J Physiology-Lung Cell Mol Physiol 314:L118–L126CrossRef
30.
go back to reference Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22:379–384PubMedPubMedCentralCrossRef Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22:379–384PubMedPubMedCentralCrossRef
31.
go back to reference Farrar EJ, Butcher JT (2014) Heterogeneous susceptibility of valve endothelial cells to mesenchymal transformation in response to TNFα. Ann Biomed Eng 42:149–161PubMedCrossRef Farrar EJ, Butcher JT (2014) Heterogeneous susceptibility of valve endothelial cells to mesenchymal transformation in response to TNFα. Ann Biomed Eng 42:149–161PubMedCrossRef
32.
go back to reference Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, Gabrielli B, Fisk NM, Khosrotehrani K (2016) Self-Renewal and high proliferative colony forming capacity of late-outgrowth endothelial progenitors is regulated by cyclin-dependent kinase inhibitors driven by Notch Signaling. Stem Cells 34:902–912PubMedCrossRef Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, Gabrielli B, Fisk NM, Khosrotehrani K (2016) Self-Renewal and high proliferative colony forming capacity of late-outgrowth endothelial progenitors is regulated by cyclin-dependent kinase inhibitors driven by Notch Signaling. Stem Cells 34:902–912PubMedCrossRef
33.
go back to reference Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y, Yang T, Lee B (2013) Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Min Res 28:649–659CrossRef Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y, Yang T, Lee B (2013) Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Min Res 28:649–659CrossRef
34.
go back to reference Briot A, Jaroszewicz A, Warren CM, Lu J, Touma M, Rudat C, Hofmann JJ, Airik R, Weinmaster G, Lyons K, Wang Y, Kispert A, Pellegrini M, Iruela-Arispe ML (2014) Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells. Dev Cell 31:707–721PubMedPubMedCentralCrossRef Briot A, Jaroszewicz A, Warren CM, Lu J, Touma M, Rudat C, Hofmann JJ, Airik R, Weinmaster G, Lyons K, Wang Y, Kispert A, Pellegrini M, Iruela-Arispe ML (2014) Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells. Dev Cell 31:707–721PubMedPubMedCentralCrossRef
35.
go back to reference Briot A, Civelek M, Seki A, Hoi K, Mack JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, Vakili L, Fogelman AM, Fishbein MC, Lusis AJ, Tontonoz P, Navab M, Berliner JA, Iruela-Arispe ML (2015) Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med 212:2147–2163PubMedPubMedCentralCrossRef Briot A, Civelek M, Seki A, Hoi K, Mack JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, Vakili L, Fogelman AM, Fishbein MC, Lusis AJ, Tontonoz P, Navab M, Berliner JA, Iruela-Arispe ML (2015) Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med 212:2147–2163PubMedPubMedCentralCrossRef
36.
go back to reference Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC (2020) Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Reviews Cardiol 17:52–63CrossRef Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC (2020) Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Reviews Cardiol 17:52–63CrossRef
37.
go back to reference Ma J, Sanchez-Duffhues G, Goumans M-J, ten Dijke P (2020) TGF-β-Induced endothelial to mesenchymal transition in Disease and tissue Engineering. Front Cell Dev Biology. ;8 Ma J, Sanchez-Duffhues G, Goumans M-J, ten Dijke P (2020) TGF-β-Induced endothelial to mesenchymal transition in Disease and tissue Engineering. Front Cell Dev Biology. ;8
38.
go back to reference Yoshimatsu Y, Kimuro S, Pauty J, Takagaki K, Nomiyama S, Inagawa A, Maeda K, Podyma-Inoue KA, Kajiya K, Matsunaga YT, Watabe T (2020) TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of activin signals. PLoS ONE 15:e0232356PubMedPubMedCentralCrossRef Yoshimatsu Y, Kimuro S, Pauty J, Takagaki K, Nomiyama S, Inagawa A, Maeda K, Podyma-Inoue KA, Kajiya K, Matsunaga YT, Watabe T (2020) TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of activin signals. PLoS ONE 15:e0232356PubMedPubMedCentralCrossRef
39.
go back to reference Adjuto-Saccone M, Soubeyran P, Garcia J, Audebert S, Camoin L, Rubis M, Roques J, Binétruy B, Iovanna JL, Tournaire R (2021) TNF-α induces endothelial–mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis 12:649PubMedPubMedCentralCrossRef Adjuto-Saccone M, Soubeyran P, Garcia J, Audebert S, Camoin L, Rubis M, Roques J, Binétruy B, Iovanna JL, Tournaire R (2021) TNF-α induces endothelial–mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis 12:649PubMedPubMedCentralCrossRef
40.
go back to reference Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, Mehta JL (2008) Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 283:10226–10231PubMedCrossRef Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, Mehta JL (2008) Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 283:10226–10231PubMedCrossRef
41.
go back to reference Jiang L, Jiang S, Zhou W, Huang J, Lin Y, Long H, Luo Q (2019) Oxidized low density lipoprotein receptor 1 promotes lung metastases of osteosarcomas through regulating the epithelial-mesenchymal transition. J Transl Med 17:369–369PubMedPubMedCentralCrossRef Jiang L, Jiang S, Zhou W, Huang J, Lin Y, Long H, Luo Q (2019) Oxidized low density lipoprotein receptor 1 promotes lung metastases of osteosarcomas through regulating the epithelial-mesenchymal transition. J Transl Med 17:369–369PubMedPubMedCentralCrossRef
42.
go back to reference Villa M, Cerda-Opazo P, Jimenez-Gallegos D, Garrido-Moreno V, Chiong M, Quest AFG, Toledo J, Garcia L (2020) Pro-fibrotic effect of oxidized LDL in cardiac myofibroblasts. Biochem Biophys Res Commun 524:696–701PubMedCrossRef Villa M, Cerda-Opazo P, Jimenez-Gallegos D, Garrido-Moreno V, Chiong M, Quest AFG, Toledo J, Garcia L (2020) Pro-fibrotic effect of oxidized LDL in cardiac myofibroblasts. Biochem Biophys Res Commun 524:696–701PubMedCrossRef
43.
go back to reference Coricor G, Serra R (2016) TGF-β regulates phosphorylation and stabilization of Sox9 protein in chondrocytes through p38 and smad dependent mechanisms. Sci Rep 6:38616PubMedPubMedCentralCrossRef Coricor G, Serra R (2016) TGF-β regulates phosphorylation and stabilization of Sox9 protein in chondrocytes through p38 and smad dependent mechanisms. Sci Rep 6:38616PubMedPubMedCentralCrossRef
44.
go back to reference Choi B-J, Park S-A, Lee S-Y, Cha YN, Surh Y-J (2017) Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of snail: a potential role of Sox9. Sci Rep 7:15918PubMedPubMedCentralCrossRef Choi B-J, Park S-A, Lee S-Y, Cha YN, Surh Y-J (2017) Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of snail: a potential role of Sox9. Sci Rep 7:15918PubMedPubMedCentralCrossRef
45.
go back to reference Cheng A, Genever PG (2010) SOX9 determines RUNX2 transactivity by directing intracellular degradation. J Bone Miner Res 25:2680–2689PubMedCrossRef Cheng A, Genever PG (2010) SOX9 determines RUNX2 transactivity by directing intracellular degradation. J Bone Miner Res 25:2680–2689PubMedCrossRef
46.
go back to reference Souilhol C, Harmsen MC, Evans PC, Krenning G (2018) Endothelial–mesenchymal transition in atherosclerosis. Cardiovascular Res 114:565–577CrossRef Souilhol C, Harmsen MC, Evans PC, Krenning G (2018) Endothelial–mesenchymal transition in atherosclerosis. Cardiovascular Res 114:565–577CrossRef
47.
go back to reference McDonald AI, Shirali AS, Aragón R, Ma F, Hernandez G, Vaughn DA, Mack JJ, Lim TY, Sunshine H, Zhao P, Kalinichenko V, Hai T, Pelegrini M, Ardehali R, Iruela-Arispe ML (2018) Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell 23:210–225e6PubMedPubMedCentralCrossRef McDonald AI, Shirali AS, Aragón R, Ma F, Hernandez G, Vaughn DA, Mack JJ, Lim TY, Sunshine H, Zhao P, Kalinichenko V, Hai T, Pelegrini M, Ardehali R, Iruela-Arispe ML (2018) Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell 23:210–225e6PubMedPubMedCentralCrossRef
49.
go back to reference Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828PubMedPubMedCentralCrossRef Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828PubMedPubMedCentralCrossRef
50.
go back to reference Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST (2009) Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol 296:G1108–G1118PubMedPubMedCentralCrossRef Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST (2009) Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol 296:G1108–G1118PubMedPubMedCentralCrossRef
51.
go back to reference Pritchett J, Athwal V, Roberts N, Hanley NA, Hanley KP (2011) Understanding the role of SOX9 in acquired diseases: lessons from development. Trends Mol Med 17:166–174PubMedCrossRef Pritchett J, Athwal V, Roberts N, Hanley NA, Hanley KP (2011) Understanding the role of SOX9 in acquired diseases: lessons from development. Trends Mol Med 17:166–174PubMedCrossRef
Metadata
Title
Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium
Authors
Jilai Zhao
Laura Sormani
Sebastien Jacquelin
Haiming Li
Cassandra Styke
Chenhao Zhou
Jonathan Beesley
Linus Oon
Simranpreet Kaur
Seen-Ling Sim
Ho Yi Wong
James Dight
Ghazaleh Hashemi
Abbas Shafiee
Edwige Roy
Jatin Patel
Kiarash Khosrotehrani
Publication date
11-05-2024
Publisher
Springer Netherlands
Published in
Angiogenesis
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-024-09927-7
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine