Skip to main content
Top
Published in: Acta Neuropathologica 2/2010

Open Access 01-08-2010 | Original Paper

Distinct glutaminyl cyclase expression in Edinger–Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease

Authors: Markus Morawski, Maike Hartlage-Rübsamen, Carsten Jäger, Alexander Waniek, Stephan Schilling, Claudia Schwab, Patrick L. McGeer, Thomas Arendt, Hans-Ulrich Demuth, Steffen Roßner

Published in: Acta Neuropathologica | Issue 2/2010

Login to get access

Abstract

Glutaminyl cyclase (QC) was discovered recently as the enzyme catalyzing the pyroglutamate (pGlu or pE) modification of N-terminally truncated Alzheimer’s disease (AD) Aβ peptides in vivo. This modification confers resistance to proteolysis, rapid aggregation and neurotoxicity and can be prevented by QC inhibitors in vitro and in vivo, as shown in transgenic animal models. However, in mouse brain QC is only expressed by a relatively low proportion of neurons in most neocortical and hippocampal subregions. Here, we demonstrate that QC is highly abundant in subcortical brain nuclei severely affected in AD. In particular, QC is expressed by virtually all urocortin-1-positive, but not by cholinergic neurons of the Edinger–Westphal nucleus, by noradrenergic locus coeruleus and by cholinergic nucleus basalis magnocellularis neurons in mouse brain. In human brain, QC is expressed by both, urocortin-1 and cholinergic Edinger–Westphal neurons and by locus coeruleus and nucleus basalis Meynert neurons. In brains from AD patients, these neuronal populations displayed intraneuronal pE-Aβ immunoreactivity and morphological signs of degeneration as well as extracellular pE-Aβ deposits. Adjacent AD brain structures lacking QC expression and brains from control subjects were devoid of such aggregates. This is the first demonstration of QC expression and pE-Aβ formation in subcortical brain regions affected in AD. Our results may explain the high vulnerability of defined subcortical neuronal populations and their central target areas in AD as a consequence of QC expression and pE-Aβ formation.
Literature
1.
go back to reference Acero G, Manutcharian K, Vasilevko V et al (2009) Immunodominant epitope and properties of pyroglutamate-modified Aβ-specific antibodies produced in rabbits. J Neuroimmunol 213:39–46CrossRefPubMed Acero G, Manutcharian K, Vasilevko V et al (2009) Immunodominant epitope and properties of pyroglutamate-modified Aβ-specific antibodies produced in rabbits. J Neuroimmunol 213:39–46CrossRefPubMed
2.
go back to reference Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14:1–14CrossRefPubMed Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14:1–14CrossRefPubMed
3.
go back to reference Bachtell RK, Weitemier AZ, Galvan-Rosas A et al (2003) The Edinger–Westphal-lateral septum urocortin pathway and its relationship to alcohol consumption. J Neurosci 23:2477–2487PubMed Bachtell RK, Weitemier AZ, Galvan-Rosas A et al (2003) The Edinger–Westphal-lateral septum urocortin pathway and its relationship to alcohol consumption. J Neurosci 23:2477–2487PubMed
4.
go back to reference Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84CrossRefPubMed Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84CrossRefPubMed
5.
go back to reference Bondareff W, Mountjoy CQ, Rossor RM, Iversen LL, Reynolds GP, Hauser DL (1987) Neuronal degeneration in the locus coeruleus and cortical correlates of Alzheimer’s disease. Alzheimer Dis Assoc Disord 1:256–262CrossRefPubMed Bondareff W, Mountjoy CQ, Rossor RM, Iversen LL, Reynolds GP, Hauser DL (1987) Neuronal degeneration in the locus coeruleus and cortical correlates of Alzheimer’s disease. Alzheimer Dis Assoc Disord 1:256–262CrossRefPubMed
6.
go back to reference Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18:401–406CrossRefPubMed Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18:401–406CrossRefPubMed
7.
go back to reference Casas C, Sergeant N, Itier JM et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300PubMed Casas C, Sergeant N, Itier JM et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300PubMed
8.
go back to reference Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal Aβ rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1 mice. Acta Neuropathol 116:647–655CrossRefPubMed Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal Aβ rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1 mice. Acta Neuropathol 116:647–655CrossRefPubMed
9.
go back to reference Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190CrossRefPubMed Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190CrossRefPubMed
10.
go back to reference Cullen MJ, Ling N, Foster AC, Pelleymounter MA (2001) Urocortin, corticotropin-releasing factor-2 receptors and energy balance. Endocrinology 142:992–999CrossRefPubMed Cullen MJ, Ling N, Foster AC, Pelleymounter MA (2001) Urocortin, corticotropin-releasing factor-2 receptors and energy balance. Endocrinology 142:992–999CrossRefPubMed
11.
go back to reference Cynis H, Schilling S, Bodnar M et al (2006) Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 1764:1618–1625PubMed Cynis H, Schilling S, Bodnar M et al (2006) Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 1764:1618–1625PubMed
12.
go back to reference D’Arrigo C, Tabaton M, Perico A (2009) N-terminal truncated pyroglutamyl beta amyloid peptide Abetapy3–42 shows a faster aggregation kinetics than the full-length Abeta1–42. Biopolymers 91:861–873CrossRefPubMed D’Arrigo C, Tabaton M, Perico A (2009) N-terminal truncated pyroglutamyl beta amyloid peptide Abetapy3–42 shows a faster aggregation kinetics than the full-length Abeta1–42. Biopolymers 91:861–873CrossRefPubMed
13.
go back to reference Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry. Brain 122:1421–1436CrossRefPubMed Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry. Brain 122:1421–1436CrossRefPubMed
14.
go back to reference Forno LS (1978) The Locus coeruleus in Alzheimer’s disease. J Neuropath Exp Neurol 37:614CrossRef Forno LS (1978) The Locus coeruleus in Alzheimer’s disease. J Neuropath Exp Neurol 37:614CrossRef
15.
go back to reference Gaszner B, Jensen KO, Farkas J et al (2009) Effects of maternal separation on dynamics of urocortin 1 and brain-derived neurotrophic factor in the rat non-preganglionic Edinger–Westphal nucleus. Int J Dev Neurosci 27:439–451CrossRefPubMed Gaszner B, Jensen KO, Farkas J et al (2009) Effects of maternal separation on dynamics of urocortin 1 and brain-derived neurotrophic factor in the rat non-preganglionic Edinger–Westphal nucleus. Int J Dev Neurosci 27:439–451CrossRefPubMed
16.
go back to reference German DC, Manaye KF, White CL III et al (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676CrossRefPubMed German DC, Manaye KF, White CL III et al (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676CrossRefPubMed
17.
go back to reference Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185CrossRefPubMed Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185CrossRefPubMed
18.
go back to reference Hartlage-Rübsamen M, Staffa K, Waniek A et al (2009) Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int J Dev Neurosci 27:825–835CrossRefPubMed Hartlage-Rübsamen M, Staffa K, Waniek A et al (2009) Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int J Dev Neurosci 27:825–835CrossRefPubMed
19.
go back to reference He W, Barrow CJ (1999) The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater beta-sheet forming and aggregation propensities in vitro than full-length A beta. Biochemistry 38:10871–10877CrossRefPubMed He W, Barrow CJ (1999) The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater beta-sheet forming and aggregation propensities in vitro than full-length A beta. Biochemistry 38:10871–10877CrossRefPubMed
20.
go back to reference Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus coeruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354CrossRefPubMed Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus coeruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354CrossRefPubMed
21.
go back to reference Horn AK, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger–Westphal nucleus. J Comp Neurol 507:1317–1335CrossRefPubMed Horn AK, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger–Westphal nucleus. J Comp Neurol 507:1317–1335CrossRefPubMed
22.
go back to reference Horn AK, Schulze C, Radtke-Schuller S (2009) The Edinger–Westphal nucleus represents different functional cell groups in different species. Ann N Y Acad Sci 1164:45–50CrossRefPubMed Horn AK, Schulze C, Radtke-Schuller S (2009) The Edinger–Westphal nucleus represents different functional cell groups in different species. Ann N Y Acad Sci 1164:45–50CrossRefPubMed
23.
go back to reference Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of Abeta 42(43) and Abeta 40 in senile plaques with end-specific Abeta monoclonals: evidence that an initially deposited species is Abeta 42(43). Neuron 13:45–53CrossRefPubMed Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of Abeta 42(43) and Abeta 40 in senile plaques with end-specific Abeta monoclonals: evidence that an initially deposited species is Abeta 42(43). Neuron 13:45–53CrossRefPubMed
24.
go back to reference Iwatsubo T, Mann DM, Odaka A, Suzuki N, Ihara Y (1995) Amyloid beta protein (Abeta) deposition: Abeta 42(43) precedes Abeta 40 in Down syndrome. Ann Neurol 37:294–299CrossRefPubMed Iwatsubo T, Mann DM, Odaka A, Suzuki N, Ihara Y (1995) Amyloid beta protein (Abeta) deposition: Abeta 42(43) precedes Abeta 40 in Down syndrome. Ann Neurol 37:294–299CrossRefPubMed
25.
go back to reference Jackisch R, Gansser S, Cassel JC (2008) Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: towards a mechanism underlying upregulations described in MCI patients? Exp Neurol 213:345–353CrossRefPubMed Jackisch R, Gansser S, Cassel JC (2008) Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: towards a mechanism underlying upregulations described in MCI patients? Exp Neurol 213:345–353CrossRefPubMed
26.
go back to reference Kalinin S, Gavrilyuk V, Polak P et al (2007) Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer’s disease. Neurobiol Aging 28:1206–1214CrossRefPubMed Kalinin S, Gavrilyuk V, Polak P et al (2007) Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer’s disease. Neurobiol Aging 28:1206–1214CrossRefPubMed
27.
go back to reference Konigsmark BW (1970) Methods for the counting of neurons. In: Nauta WHJ, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin, pp 315–380 Konigsmark BW (1970) Methods for the counting of neurons. In: Nauta WHJ, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin, pp 315–380
28.
go back to reference Koob GF, Heinrichs SC (1999) A role of corticotropin-releasing factor and urocortin in behavioral responses to stressors. Brain Res 848:141–152CrossRefPubMed Koob GF, Heinrichs SC (1999) A role of corticotropin-releasing factor and urocortin in behavioral responses to stressors. Brain Res 848:141–152CrossRefPubMed
29.
go back to reference Liu K, Solano I, Mann D et al (2006) Characterization of Abeta11–40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Abeta species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol 112:163–174CrossRefPubMed Liu K, Solano I, Mann D et al (2006) Characterization of Abeta11–40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Abeta species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol 112:163–174CrossRefPubMed
30.
go back to reference Loy R, Koziell DA, Lindsay JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699–710CrossRefPubMed Loy R, Koziell DA, Lindsay JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699–710CrossRefPubMed
31.
go back to reference Mai JK, Assheuer J, Paxinos G (2004) Atlas of the human brain. Academic Press, San Diego Mai JK, Assheuer J, Paxinos G (2004) Atlas of the human brain. Academic Press, San Diego
32.
go back to reference Mann DM, Yates PO, Marcyniuk B (1984) Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol 3:199–205PubMed Mann DM, Yates PO, Marcyniuk B (1984) Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol 3:199–205PubMed
33.
go back to reference Marcyniuk NB, Mann DM, Yates PO (1986) The topography of cell loss from locus coeruleus in Alzheimer’s disease. J Neurol Sci 76:335–345CrossRefPubMed Marcyniuk NB, Mann DM, Yates PO (1986) The topography of cell loss from locus coeruleus in Alzheimer’s disease. J Neurol Sci 76:335–345CrossRefPubMed
34.
go back to reference Marcyniuk NB, Mann DM, Yates PO (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neurosci Lett 64:247–252CrossRefPubMed Marcyniuk NB, Mann DM, Yates PO (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neurosci Lett 64:247–252CrossRefPubMed
35.
go back to reference Marino MD, Bourdelat-Parks BN, Weinshenker D (2005) Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197–208CrossRefPubMed Marino MD, Bourdelat-Parks BN, Weinshenker D (2005) Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197–208CrossRefPubMed
36.
go back to reference McColl G, Roberts BR, Gunn AP et al (2009) The Caenorhabditis elegans Aβ1-42 model of Alzheimer’s disease predominantly expresses Aβ3-42. J Biol Chem 284:22697–22702CrossRefPubMed McColl G, Roberts BR, Gunn AP et al (2009) The Caenorhabditis elegans Aβ1-42 model of Alzheimer’s disease predominantly expresses Aβ3-42. J Biol Chem 284:22697–22702CrossRefPubMed
37.
go back to reference McKhann G, Drachmann D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944PubMed McKhann G, Drachmann D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944PubMed
38.
go back to reference Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821CrossRefPubMed Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821CrossRefPubMed
39.
go back to reference Moreau JL, Kilpatrick G, Jenck F (1997) Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport 8:1697–1701CrossRefPubMed Moreau JL, Kilpatrick G, Jenck F (1997) Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport 8:1697–1701CrossRefPubMed
40.
go back to reference Muresan Z, Muresan V (2008) Seeding neuritic plaques from the distance: a possible role for brainstem neurons in the development of Alzheimer’s disease. Neurodegener Dis 5:250–253CrossRefPubMed Muresan Z, Muresan V (2008) Seeding neuritic plaques from the distance: a possible role for brainstem neurons in the development of Alzheimer’s disease. Neurodegener Dis 5:250–253CrossRefPubMed
41.
go back to reference Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego
42.
go back to reference Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego
43.
go back to reference Piccini A, Russo C, Gliozzi A et al (2005) Beta-amyloid is different in normal aging and in Alzheimer’s disease. J Biol Chem 280:34186–34192CrossRefPubMed Piccini A, Russo C, Gliozzi A et al (2005) Beta-amyloid is different in normal aging and in Alzheimer’s disease. J Biol Chem 280:34186–34192CrossRefPubMed
44.
go back to reference Roßner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 56:541–569CrossRefPubMed Roßner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 56:541–569CrossRefPubMed
45.
go back to reference Rüb U, Del Tredici K, Schultz C, Büttner-Ennever JA, Braak H (2001) The premotor region essential for rapid vertical eye movements shows early involvement in Alzheimer’s disease-related cytoskeletal pathology. Vision Res 41:2149–2156CrossRefPubMed Rüb U, Del Tredici K, Schultz C, Büttner-Ennever JA, Braak H (2001) The premotor region essential for rapid vertical eye movements shows early involvement in Alzheimer’s disease-related cytoskeletal pathology. Vision Res 41:2149–2156CrossRefPubMed
46.
go back to reference Russo C, Schettini G, Saido TC et al (2000) Presenilin-1 mutations in Alzheimer’s disease. Nature 405:531–532CrossRefPubMed Russo C, Schettini G, Saido TC et al (2000) Presenilin-1 mutations in Alzheimer’s disease. Nature 405:531–532CrossRefPubMed
47.
go back to reference Russo C, Violani E, Salis S et al (2002) Pyroglutamate-modified amyloid beta-peptides–AbetaN3(pE)–strongly affect cultured neuron and astrocyte survival. J Neurochem 82:1480–1489CrossRefPubMed Russo C, Violani E, Salis S et al (2002) Pyroglutamate-modified amyloid beta-peptides–AbetaN3(pE)–strongly affect cultured neuron and astrocyte survival. J Neurochem 82:1480–1489CrossRefPubMed
48.
go back to reference Ryabinin AE, Tsivkovskaia NO, Ryabinin SA (2005) Urocortin 1-containing neurons in the human Edinger–Westphal nucleus. Neuroscience 134:1317–1323CrossRefPubMed Ryabinin AE, Tsivkovskaia NO, Ryabinin SA (2005) Urocortin 1-containing neurons in the human Edinger–Westphal nucleus. Neuroscience 134:1317–1323CrossRefPubMed
49.
go back to reference Saido TC (1998) Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 19:S69–S75CrossRefPubMed Saido TC (1998) Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 19:S69–S75CrossRefPubMed
50.
go back to reference Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron 14:457–466CrossRefPubMed Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron 14:457–466CrossRefPubMed
51.
go back to reference Saido TC, Yamao H, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176CrossRefPubMed Saido TC, Yamao H, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176CrossRefPubMed
52.
go back to reference Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU (2004) Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett 563:191–196CrossRefPubMed Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU (2004) Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett 563:191–196CrossRefPubMed
53.
go back to reference Schilling S, Lauber T, Schaupp M et al (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393–12399CrossRefPubMed Schilling S, Lauber T, Schaupp M et al (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393–12399CrossRefPubMed
54.
go back to reference Schilling S, Zeitschel U, Hoffmann T et al (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111CrossRefPubMed Schilling S, Zeitschel U, Hoffmann T et al (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111CrossRefPubMed
55.
go back to reference Schilling S, Appl T, Hoffmann T et al (2008) Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem 106:1225–1236CrossRefPubMed Schilling S, Appl T, Hoffmann T et al (2008) Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem 106:1225–1236CrossRefPubMed
56.
go back to reference Schlenzig D, Manhart S, Cinar Y et al (2009) Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48:7072–7078CrossRefPubMed Schlenzig D, Manhart S, Cinar Y et al (2009) Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48:7072–7078CrossRefPubMed
57.
go back to reference Scinto LF, Daffner KR, Dressler D et al (1994) A potential noninvasive neurobiological test for Alzheimer’s disease. Science 266:1051–1054CrossRefPubMed Scinto LF, Daffner KR, Dressler D et al (1994) A potential noninvasive neurobiological test for Alzheimer’s disease. Science 266:1051–1054CrossRefPubMed
58.
go back to reference Scinto LF, Wu CK, Firla KM, Daffner KR, Saroff D, Geula C (1999) Focal pathology in Edinger–Westphal nucleus explains pupillary hypersensitivity in Alzheimer’s disease. Acta Neuropathol 97:557–564CrossRefPubMed Scinto LF, Wu CK, Firla KM, Daffner KR, Saroff D, Geula C (1999) Focal pathology in Edinger–Westphal nucleus explains pupillary hypersensitivity in Alzheimer’s disease. Acta Neuropathol 97:557–564CrossRefPubMed
59.
go back to reference Scinto LF, Frosch M, Wu CK, Daffner KR, Gedi N, Geula C (2001) Selective cell loss in Edinger–Westphal in asymptotic elders and Alzheimer’s patients. Neurobiol Aging 22:729–736CrossRefPubMed Scinto LF, Frosch M, Wu CK, Daffner KR, Gedi N, Geula C (2001) Selective cell loss in Edinger–Westphal in asymptotic elders and Alzheimer’s patients. Neurobiol Aging 22:729–736CrossRefPubMed
60.
go back to reference Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584CrossRefPubMed Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584CrossRefPubMed
61.
go back to reference Sergeant N, Bombois S, Ghestem A et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591CrossRefPubMed Sergeant N, Bombois S, Ghestem A et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591CrossRefPubMed
62.
go back to reference Shin RW, Ogino K, Kondo A et al (1997) Amyloid beta-protein (Abeta) 1–40 but not Abeta1-42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. J Neurosci 17:8187–8193PubMed Shin RW, Ogino K, Kondo A et al (1997) Amyloid beta-protein (Abeta) 1–40 but not Abeta1-42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. J Neurosci 17:8187–8193PubMed
63.
go back to reference Spina M, Merlo-Pich E, Chan RK et al (1996) Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 273:1561–1564CrossRefPubMed Spina M, Merlo-Pich E, Chan RK et al (1996) Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 273:1561–1564CrossRefPubMed
64.
go back to reference Vanderstichele H, De Meyer G, Andreasen N et al (2005) Amino-truncated {beta}-amyloid42 peptides in cerebrospinal fluid and prediction of progression of mild cognitive impairment. Clin Chem 51:1650–1660CrossRefPubMed Vanderstichele H, De Meyer G, Andreasen N et al (2005) Amino-truncated {beta}-amyloid42 peptides in cerebrospinal fluid and prediction of progression of mild cognitive impairment. Clin Chem 51:1650–1660CrossRefPubMed
65.
go back to reference Vaughan J, Donaldson C, Bittencourt J et al (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:287–292CrossRefPubMed Vaughan J, Donaldson C, Bittencourt J et al (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:287–292CrossRefPubMed
66.
go back to reference Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH (1998) Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506:755–773CrossRefPubMed Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH (1998) Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506:755–773CrossRefPubMed
67.
go back to reference Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345CrossRefPubMed Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345CrossRefPubMed
68.
go back to reference Weitemier AZ, Tsivkovskaia NO, Ryabinin AE (2005) Urocortin 1 distribution in mouse brain is strain-dependent. Neuroscience 132:729–740CrossRefPubMed Weitemier AZ, Tsivkovskaia NO, Ryabinin AE (2005) Urocortin 1 distribution in mouse brain is strain-dependent. Neuroscience 132:729–740CrossRefPubMed
69.
go back to reference Weninger SC, Peters LL, Majzoub JA (2000) Urocortin expression in the Edinger–Westphal nucleus is up-regulated by stress and corticotropin-releasing hormone deficiency. Endocrinology 141:256–263CrossRefPubMed Weninger SC, Peters LL, Majzoub JA (2000) Urocortin expression in the Edinger–Westphal nucleus is up-regulated by stress and corticotropin-releasing hormone deficiency. Endocrinology 141:256–263CrossRefPubMed
70.
go back to reference Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126CrossRefPubMed Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126CrossRefPubMed
71.
go back to reference Wilcock GK, Esiri MM, Bowen DM, Hughes AO (1988) The different involvement of subcortical nuclei in senile dementia of Alzheimer’s type. J Neurol Neurosurg Psychiatry 51:842–849CrossRefPubMed Wilcock GK, Esiri MM, Bowen DM, Hughes AO (1988) The different involvement of subcortical nuclei in senile dementia of Alzheimer’s type. J Neurol Neurosurg Psychiatry 51:842–849CrossRefPubMed
72.
go back to reference Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA (2009) Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118:487–496CrossRefPubMed Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA (2009) Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118:487–496CrossRefPubMed
73.
go back to reference Wirths O, Bethge T, Marcello A et al (2010) Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease. J Neural Transm 117:85–96CrossRefPubMed Wirths O, Bethge T, Marcello A et al (2010) Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease. J Neural Transm 117:85–96CrossRefPubMed
Metadata
Title
Distinct glutaminyl cyclase expression in Edinger–Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease
Authors
Markus Morawski
Maike Hartlage-Rübsamen
Carsten Jäger
Alexander Waniek
Stephan Schilling
Claudia Schwab
Patrick L. McGeer
Thomas Arendt
Hans-Ulrich Demuth
Steffen Roßner
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 2/2010
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-010-0685-y

Other articles of this Issue 2/2010

Acta Neuropathologica 2/2010 Go to the issue