Skip to main content
Top
Published in: Breast Cancer Research 1/2001

01-02-2001 | Commentary

Distinct functions of BRCA1 and BRCA2 in double-strand break repair

Authors: Yilun Liu, Stephen C West

Published in: Breast Cancer Research | Issue 1/2001

Login to get access

Abstract

Individuals carrying BRCA mutations are predisposed to breast cancer. The BRCA1 and BRCA2 proteins are required for homologous recombination and DNA break repair, leading to the suggestion that they act in concert. However, direct evidence of a stable BRCA1/BRCA2 complex has not been demonstrated. Rather, the two proteins have been found as constituents of discrete, but perhaps nonexclusive complexes that are critical for repair. We discuss the interaction of BRCA1 with the BACH1 and BARD1 proteins, and suggest that the pleiotropic nature of mutations in BRCA1 may be associated with defects in protein–protein interactions. In contrast, the role of BRCA2 in DNA repair may be more defined by its direct interaction with the RAD51 recombinase.
Literature
1.
go back to reference Rahman N, Stratton MR: The genetics of breast cancer susceptibility. Annu Rev Genet. 1998, 32: 95-121. 10.1146/annurev.genet.32.1.95.CrossRefPubMed Rahman N, Stratton MR: The genetics of breast cancer susceptibility. Annu Rev Genet. 1998, 32: 95-121. 10.1146/annurev.genet.32.1.95.CrossRefPubMed
2.
go back to reference Eeles RA: Future possibilities in the prevention of breast cancer: Intervention strategies in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2000, 2: 283-290. 10.1186/bcr70.CrossRefPubMedPubMedCentral Eeles RA: Future possibilities in the prevention of breast cancer: Intervention strategies in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2000, 2: 283-290. 10.1186/bcr70.CrossRefPubMedPubMedCentral
3.
go back to reference Welcsh PL, King MC: BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001, 10: 705-713. 10.1093/hmg/10.7.705.CrossRefPubMed Welcsh PL, King MC: BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001, 10: 705-713. 10.1093/hmg/10.7.705.CrossRefPubMed
4.
go back to reference Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A: Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of BRCA1, BRCA2, BRCA1/BRCA2, BRCA1/p53, and BRCA2/p53 null zygous embryos. Genes Dev. 1997, 11: 1226-1241.CrossRefPubMed Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A: Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of BRCA1, BRCA2, BRCA1/BRCA2, BRCA1/p53, and BRCA2/p53 null zygous embryos. Genes Dev. 1997, 11: 1226-1241.CrossRefPubMed
5.
go back to reference Sharan SK, Morimatsu M, Albrecht U, Lim SS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A: Embryonic lethality and radiation hypersensitivity mediated by RAD51 in mice lacking BRCA2. Nature. 1997, 386: 804-810. 10.1038/386804a0.CrossRefPubMed Sharan SK, Morimatsu M, Albrecht U, Lim SS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A: Embryonic lethality and radiation hypersensitivity mediated by RAD51 in mice lacking BRCA2. Nature. 1997, 386: 804-810. 10.1038/386804a0.CrossRefPubMed
6.
go back to reference Suzuki A, Delapompa JL, Hakem R, Elia A, Yoshida R, Mo R, Nishina H, Chuang T, Wakeham A, Itie A, Koo W, Billia P, Ho A, Fukumoto M, Hui CC, Mak TW: BRCA2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 1997, 11: 1242-1252.CrossRefPubMed Suzuki A, Delapompa JL, Hakem R, Elia A, Yoshida R, Mo R, Nishina H, Chuang T, Wakeham A, Itie A, Koo W, Billia P, Ho A, Fukumoto M, Hui CC, Mak TW: BRCA2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 1997, 11: 1242-1252.CrossRefPubMed
7.
go back to reference Cortez D, Wang Y, Qin J, Elledge SJ: Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science. 1999, 286: 1162-1166. 10.1126/science.286.5442.1162.CrossRefPubMed Cortez D, Wang Y, Qin J, Elledge SJ: Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science. 1999, 286: 1162-1166. 10.1126/science.286.5442.1162.CrossRefPubMed
8.
go back to reference Hohenstein P, Kielman MF, Breukel C, Bennett LM, Wiseman R, Krimpenfort P, Cornelisse G, van Ommen GJ, Devilee P, Fodde R: A targeted mouse BRCA1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene. 2001, 20: 2544-2550. 10.1038/sj.onc.1204363.CrossRefPubMed Hohenstein P, Kielman MF, Breukel C, Bennett LM, Wiseman R, Krimpenfort P, Cornelisse G, van Ommen GJ, Devilee P, Fodde R: A targeted mouse BRCA1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene. 2001, 20: 2544-2550. 10.1038/sj.onc.1204363.CrossRefPubMed
9.
go back to reference Yu VPCC, Köehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR: Gross chromosomal rearrangements and genetic exchange between non-homologous chromosomes following BRCA2 inactivation. Genes Dev. 2000, 14: 1400-1406.PubMedPubMedCentral Yu VPCC, Köehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR: Gross chromosomal rearrangements and genetic exchange between non-homologous chromosomes following BRCA2 inactivation. Genes Dev. 2000, 14: 1400-1406.PubMedPubMedCentral
10.
go back to reference Frankish H: BRCA1 has a pivotal role in repairing DNA. Lancet. 2001, 357: 1678-1678. Frankish H: BRCA1 has a pivotal role in repairing DNA. Lancet. 2001, 357: 1678-1678.
11.
go back to reference Patel KJ, Yu VPCC, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BAJ, Venkitaraman AR: Involvement of BRCA2 in DNA repair. Mol Cell. 1998, 1: 347-357.CrossRefPubMed Patel KJ, Yu VPCC, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BAJ, Venkitaraman AR: Involvement of BRCA2 in DNA repair. Mol Cell. 1998, 1: 347-357.CrossRefPubMed
12.
go back to reference Moynahan ME, Chiu JW, Koller BH, Jasin M: BRCA1 controls homology-directed DNA repair. Mol Cell. 1999, 4: 511-518.CrossRefPubMed Moynahan ME, Chiu JW, Koller BH, Jasin M: BRCA1 controls homology-directed DNA repair. Mol Cell. 1999, 4: 511-518.CrossRefPubMed
13.
go back to reference Snouwaert JN, Gowen LC, Latour AM, Mohn AR, Xiao A, Di Biase L, Koller BH: BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a BRCA1 transgene. Oncogene. 1999, 18: 7900-7907. 10.1038/sj/onc/1203334.CrossRefPubMed Snouwaert JN, Gowen LC, Latour AM, Mohn AR, Xiao A, Di Biase L, Koller BH: BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a BRCA1 transgene. Oncogene. 1999, 18: 7900-7907. 10.1038/sj/onc/1203334.CrossRefPubMed
14.
go back to reference Moynahan ME, Pierce AJ, Jasin M: BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001, 7: 263-272. 10.1016/S1097-2765(01)00174-5.CrossRefPubMed Moynahan ME, Pierce AJ, Jasin M: BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001, 7: 263-272. 10.1016/S1097-2765(01)00174-5.CrossRefPubMed
15.
go back to reference Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, Tybulewicz VLJ, Ashworth A: Tumourigenesis and a DNA-repair defect in mice with a truncating BRCA2 mutation. Nature Genet. 1997, 17: 423-430.CrossRefPubMed Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, Tybulewicz VLJ, Ashworth A: Tumourigenesis and a DNA-repair defect in mice with a truncating BRCA2 mutation. Nature Genet. 1997, 17: 423-430.CrossRefPubMed
16.
go back to reference Foray N, Randrianarison V, Marot D, Perricaudet M, Lenoir G, Feunteun J: Gamma rays induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene. 1999, 18: 7334-7342. 10.1038/sj/onc/1203165.CrossRefPubMed Foray N, Randrianarison V, Marot D, Perricaudet M, Lenoir G, Feunteun J: Gamma rays induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene. 1999, 18: 7334-7342. 10.1038/sj/onc/1203165.CrossRefPubMed
17.
go back to reference Chen JJ, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R: Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998, 2: 317-328.CrossRefPubMed Chen JJ, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R: Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998, 2: 317-328.CrossRefPubMed
18.
go back to reference Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J: BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000, 14: 927-939.PubMedPubMedCentral Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J: BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000, 14: 927-939.PubMedPubMedCentral
19.
go back to reference Kerr P, Ashworth A: New complexities for BRCA1 and BRCA2. Curr Biol. 2001, 11: R668-R676. 10.1016/S0960-9822(01)00389-X.CrossRefPubMed Kerr P, Ashworth A: New complexities for BRCA1 and BRCA2. Curr Biol. 2001, 11: R668-R676. 10.1016/S0960-9822(01)00389-X.CrossRefPubMed
20.
go back to reference Deng CX, Brodie SG: Roles of BRCA1 and its interacting proteins. Bioessays. 2000, 22: 728-737. 10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.3.CO;2-2.CrossRefPubMed Deng CX, Brodie SG: Roles of BRCA1 and its interacting proteins. Bioessays. 2000, 22: 728-737. 10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.3.CO;2-2.CrossRefPubMed
21.
go back to reference Chen PL, Chen CF, Chen YM, Xiao J, Sharp ZD, Lee WH: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA. 1998, 95: 5287-5292. 10.1073/pnas.95.9.5287.CrossRefPubMedPubMedCentral Chen PL, Chen CF, Chen YM, Xiao J, Sharp ZD, Lee WH: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA. 1998, 95: 5287-5292. 10.1073/pnas.95.9.5287.CrossRefPubMedPubMedCentral
22.
go back to reference Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R: Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996, 14: 430-440.CrossRefPubMed Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R: Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996, 14: 430-440.CrossRefPubMed
23.
go back to reference Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata F, Ohta T: The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001, 276: 14537-14540. 10.1074/jbc.C000881200.CrossRefPubMed Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata F, Ohta T: The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001, 276: 14537-14540. 10.1074/jbc.C000881200.CrossRefPubMed
24.
go back to reference Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DCR, Sgroi DC, Lane WS, Haber DA, Livingston DM: BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001, 105: 149-160. 10.1016/S0092-8674(01)00304-X.CrossRefPubMed Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DCR, Sgroi DC, Lane WS, Haber DA, Livingston DM: BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001, 105: 149-160. 10.1016/S0092-8674(01)00304-X.CrossRefPubMed
25.
go back to reference Zhang XD, Morera S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA, Sternberg MJE, Lindahl T, Freemont PS: Structure of an XRCC1 BRCT domain: a new protein–protein interaction module. EMBO J. 1998, 17: 6404-6411. 10.1093/emboj/17.21.6404.CrossRefPubMedPubMedCentral Zhang XD, Morera S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA, Sternberg MJE, Lindahl T, Freemont PS: Structure of an XRCC1 BRCT domain: a new protein–protein interaction module. EMBO J. 1998, 17: 6404-6411. 10.1093/emboj/17.21.6404.CrossRefPubMedPubMedCentral
26.
go back to reference Ruffner H, Joazeiro CAP, Hemmati D, Hunter T, Verma IM: Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA. 2001, 98: 5134-5139. 10.1073/pnas.081068398.CrossRefPubMedPubMedCentral Ruffner H, Joazeiro CAP, Hemmati D, Hunter T, Verma IM: Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA. 2001, 98: 5134-5139. 10.1073/pnas.081068398.CrossRefPubMedPubMedCentral
27.
go back to reference Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, Minna J, Borodovsky A, Schultz DC, Wilkinson KD, Maul GG, Barlev N, Berger SL, Prendergast GC, Rauscher FJ: BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998, 16: 1097-1112. 10.1038/sj/onc/1201861.CrossRefPubMed Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, Minna J, Borodovsky A, Schultz DC, Wilkinson KD, Maul GG, Barlev N, Berger SL, Prendergast GC, Rauscher FJ: BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998, 16: 1097-1112. 10.1038/sj/onc/1201861.CrossRefPubMed
28.
go back to reference Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001, 7: 249-262. 10.1016/S1097-2765(01)00173-3.CrossRefPubMed Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001, 7: 249-262. 10.1016/S1097-2765(01)00173-3.CrossRefPubMed
30.
go back to reference Wang HC, Zeng ZC, Bui TA, DiBiase SJ, Qin W, Xia F, Powell SN, Iliakis G: Non-homologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res. 2001, 61: 270-277.PubMed Wang HC, Zeng ZC, Bui TA, DiBiase SJ, Qin W, Xia F, Powell SN, Iliakis G: Non-homologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res. 2001, 61: 270-277.PubMed
31.
go back to reference Baumann P, West SC: Role of the human RAD51 protein in homologous recombination and double-stranded break repair. Trends Biochem Sci. 1998, 23: 247-251. 10.1016/S0968-0004(98)01232-8.CrossRefPubMed Baumann P, West SC: Role of the human RAD51 protein in homologous recombination and double-stranded break repair. Trends Biochem Sci. 1998, 23: 247-251. 10.1016/S0968-0004(98)01232-8.CrossRefPubMed
32.
go back to reference Wong AKC, Pero R, Ormonde PA, Tavtigian SV, Bartel PL: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene BRCA2. J Biol Chem. 1997, 272: 31941-31944. 10.1074/jbc.272.51.31941.CrossRefPubMed Wong AKC, Pero R, Ormonde PA, Tavtigian SV, Bartel PL: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene BRCA2. J Biol Chem. 1997, 272: 31941-31944. 10.1074/jbc.272.51.31941.CrossRefPubMed
33.
go back to reference Davies AA, Masson J-Y, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC: Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001, 7: 273-282. 10.1016/S1097-2765(01)00175-7.CrossRefPubMed Davies AA, Masson J-Y, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC: Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001, 7: 273-282. 10.1016/S1097-2765(01)00175-7.CrossRefPubMed
34.
go back to reference Chen CF, Chen PL, Zhong Q, Sharp ZD, Lee WH: Expression of BRC repeats in breast cancer cells disrupts the BRCA2-RAD51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J Biol Chem. 1999, 274: 32931-32935. 10.1074/jbc.274.46.32931.CrossRefPubMed Chen CF, Chen PL, Zhong Q, Sharp ZD, Lee WH: Expression of BRC repeats in breast cancer cells disrupts the BRCA2-RAD51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J Biol Chem. 1999, 274: 32931-32935. 10.1074/jbc.274.46.32931.CrossRefPubMed
35.
go back to reference Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM: Association of BRCA1 with RAD51 in mitotic and meiotic cells. Cell. 1997, 88: 265-275.CrossRefPubMed Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM: Association of BRCA1 with RAD51 in mitotic and meiotic cells. Cell. 1997, 88: 265-275.CrossRefPubMed
Metadata
Title
Distinct functions of BRCA1 and BRCA2 in double-strand break repair
Authors
Yilun Liu
Stephen C West
Publication date
01-02-2001
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2001
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr417

Other articles of this Issue 1/2001

Breast Cancer Research 1/2001 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine