Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury

Authors: Takeshi Wada, Satoshi Gando, Kunihiko Maekaw, Kenichi Katabami, Hisako Sageshima, Mineji Hayakawa, Atsushi Sawamura

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

There is evidence to demonstrate that the coagulopathy which occurs in patients with traumatic brain injury coincides with disseminated intravascular coagulation (DIC). We hypothesized that DIC with increased fibrinolysis during the early stage of isolated traumatic brain injury (iTBI) affects the outcome of the patients and that hypoperfusion contributes to hyperfibrinolysis in the DIC.

Methods

This retrospective study included 92 patients with iTBI who were divided into DIC and non-DIC groups according to the Japanese Association Acute Medicine DIC scoring system. The DIC patients were subdivided into those with and without hyperfibrinolysis. The platelet counts and global markers of coagulation and fibrinolysis were measured. Systemic inflammatory response syndrome (SIRS), organ dysfunction (assessed by the Sequential Organ Failure Assessment score), tissue hypoperfusion (assessed by the lactate levels) and the transfusion volume were also evaluated. The outcome measure was all-cause hospital mortality.

Results

DIC patients showed consumption coagulopathy, lower antithrombin levels and higher fibrin/fibrinogen degradation products (FDP) and D-dimer levels than non-DIC patients. All of the DIC patients developed SIRS accompanied by organ dysfunction and required higher blood transfusion volumes, leading to a worse outcome than non-DIC patients. These changes were more prominent in DIC with hyperfibrinolysis. A higher FDP/D-dimer ratio suggests that DIC belongs to the fibrinolytic phenotype and involves fibrin(ogen)olysis. The mean blood pressures of the patients with and without DIC on arrival were identical. Hypoperfusion and the lactate levels were not identified as independent predictors of hyperfibrinolysis.

Conclusions

DIC, especially DIC with hyperfibrinolysis, affects the outcome of patients with iTBI. Low blood pressure-induced tissue hypoperfusion does not contribute to hyperfibrinolysis in this type of DIC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Taylor Jr FB, Toh CH, Hoots WK, Wada H, Levi M. Toward definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.PubMed Taylor Jr FB, Toh CH, Hoots WK, Wada H, Levi M. Toward definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.PubMed
2.
3.
go back to reference Kaufman HH, Hui KS, Mattson JC, Borit A, Childs TL, Hooots WK, et al. Clinicopathological correlations of disseminated intravascular coagulation in patients with head injury. Neurosurgery. 1984;15:34–42.CrossRefPubMed Kaufman HH, Hui KS, Mattson JC, Borit A, Childs TL, Hooots WK, et al. Clinicopathological correlations of disseminated intravascular coagulation in patients with head injury. Neurosurgery. 1984;15:34–42.CrossRefPubMed
4.
go back to reference Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neuro Crit Care. 2004;1:479–88. Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neuro Crit Care. 2004;1:479–88.
5.
go back to reference Stein SC, Young GS, Talucci RC, Greenbaum BH, Ross SE. Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery. 1992;30:160–5.CrossRefPubMed Stein SC, Young GS, Talucci RC, Greenbaum BH, Ross SE. Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery. 1992;30:160–5.CrossRefPubMed
6.
go back to reference Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.CrossRefPubMed Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.CrossRefPubMed
7.
go back to reference Stein SC, Graham DI, Chen XH, Smith DH. Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery. 2004;54:687–91.CrossRefPubMed Stein SC, Graham DI, Chen XH, Smith DH. Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery. 2004;54:687–91.CrossRefPubMed
8.
go back to reference Yokota H, Naoe Y, Nakabayashi M, Unemoto K, Kushimoto S, Kurokawa A, et al. Cerebral endothelial injury in severe head injury: the significance of serum thrombomodulin and the von Willebrand factor. J Neurotrauma. 2002;19:1007–15.CrossRefPubMed Yokota H, Naoe Y, Nakabayashi M, Unemoto K, Kushimoto S, Kurokawa A, et al. Cerebral endothelial injury in severe head injury: the significance of serum thrombomodulin and the von Willebrand factor. J Neurotrauma. 2002;19:1007–15.CrossRefPubMed
9.
go back to reference Di Battisata AP, Rizoli SB, Lejnieks B, Min A, Shiu MY, Peng HT, et al. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated brain injury. Shock. 2016;46 Suppl 1:96–103.CrossRef Di Battisata AP, Rizoli SB, Lejnieks B, Min A, Shiu MY, Peng HT, et al. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated brain injury. Shock. 2016;46 Suppl 1:96–103.CrossRef
10.
go back to reference Marder VJ, Feinstein DI, Colman RW, Levi M. Consumptive thrombohemorrhagic disorders. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, editors. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1571–600. Marder VJ, Feinstein DI, Colman RW, Levi M. Consumptive thrombohemorrhagic disorders. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, editors. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1571–600.
12.
go back to reference Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, et al. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009;124:608–13.CrossRefPubMed Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, et al. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009;124:608–13.CrossRefPubMed
13.
go back to reference Gando S. Disseminated intravascular coagulation. In: Gonzalez E, Moor HB, Moore E, editors. Trauma induced coagulopathy. Switzerland: Springer International Publishing AG; 2016. p. 195–217. Gando S. Disseminated intravascular coagulation. In: Gonzalez E, Moor HB, Moore E, editors. Trauma induced coagulopathy. Switzerland: Springer International Publishing AG; 2016. p. 195–217.
14.
go back to reference van der Sande JJ, Veltkamp JJ, Boekhout-Mussert RJ, Bouwhuis-Hoogerwerf ML. Head injury and coagulation disorders. J Neurosurg. 1978;49:357–65.CrossRefPubMed van der Sande JJ, Veltkamp JJ, Boekhout-Mussert RJ, Bouwhuis-Hoogerwerf ML. Head injury and coagulation disorders. J Neurosurg. 1978;49:357–65.CrossRefPubMed
15.
go back to reference Olson JD, Kaufmann HH, Moake J, O’Gorman TW, Hoots K, Wagner K, et al. The incidence and significance of hemostatic abnormalities in patients with head injuries. Neurosurgery. 1989;24:825–32.CrossRefPubMed Olson JD, Kaufmann HH, Moake J, O’Gorman TW, Hoots K, Wagner K, et al. The incidence and significance of hemostatic abnormalities in patients with head injuries. Neurosurgery. 1989;24:825–32.CrossRefPubMed
16.
go back to reference Tian HL, Chen H, Wu BS, Cao HL, Xu T, Hu J, Wang G, et al. D-dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: analysis of 194 cases. Neurosurg Rev. 2010;33:359–66.CrossRefPubMed Tian HL, Chen H, Wu BS, Cao HL, Xu T, Hu J, Wang G, et al. D-dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: analysis of 194 cases. Neurosurg Rev. 2010;33:359–66.CrossRefPubMed
17.
go back to reference Nakae R, Takayama Y, Kuwamoto K, Naoe Y, Sato H, Yokota H. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury. J Neurotrauma. 2016;33:688–95.CrossRefPubMed Nakae R, Takayama Y, Kuwamoto K, Naoe Y, Sato H, Yokota H. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury. J Neurotrauma. 2016;33:688–95.CrossRefPubMed
18.
go back to reference Miner ME, Kaufmann HH, Graham SH, Haar FH, Gildenberg PL. Disseminated intravascular coagulation fibrinolytic syndrome following head injury in children: frequency and prognostic implication. J Pediatrics. 1982;100:687–91.CrossRef Miner ME, Kaufmann HH, Graham SH, Haar FH, Gildenberg PL. Disseminated intravascular coagulation fibrinolytic syndrome following head injury in children: frequency and prognostic implication. J Pediatrics. 1982;100:687–91.CrossRef
19.
go back to reference Lustenberger T, Talving P, Kobayashi L, Barmparas G, Inaba K, Lam L, et al. Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma. 2010;69:1410–4.CrossRefPubMed Lustenberger T, Talving P, Kobayashi L, Barmparas G, Inaba K, Lam L, et al. Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma. 2010;69:1410–4.CrossRefPubMed
20.
go back to reference Hijazi N, Fanne RA, Abramovitch R, Yarovoi S, Higazi M, Abdeen S, et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood. 2015;125:2558–67.CrossRefPubMedPubMedCentral Hijazi N, Fanne RA, Abramovitch R, Yarovoi S, Higazi M, Abdeen S, et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood. 2015;125:2558–67.CrossRefPubMedPubMedCentral
21.
go back to reference Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286:1754–8.CrossRefPubMed Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286:1754–8.CrossRefPubMed
22.
go back to reference Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference committee. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definition for sepsis and organ failure and guidelines for the use innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.CrossRef Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference committee. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definition for sepsis and organ failure and guidelines for the use innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.CrossRef
23.
go back to reference Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T, Japanese Association for Acute Medicine Disseminated Intravascular Coagulation (JAAM DIC) study group, et al. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: results of a multicenter, prospective survey. Crit Care Med. 2008;36:145–50.CrossRefPubMed Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T, Japanese Association for Acute Medicine Disseminated Intravascular Coagulation (JAAM DIC) study group, et al. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: results of a multicenter, prospective survey. Crit Care Med. 2008;36:145–50.CrossRefPubMed
24.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.CrossRefPubMed
25.
go back to reference Kaufman HH, Moake JL, Olson JD, Miner ME, duCret RP, Pruessner JL, et al. Delayed and recurrent intracranial hematomas related to disseminated intravascular clotting and fibrinolysis in head injury. Neurosurgery. 1980;7:445–9.CrossRefPubMed Kaufman HH, Moake JL, Olson JD, Miner ME, duCret RP, Pruessner JL, et al. Delayed and recurrent intracranial hematomas related to disseminated intravascular clotting and fibrinolysis in head injury. Neurosurgery. 1980;7:445–9.CrossRefPubMed
26.
go back to reference Lin HL, Kuo LC, Chen CW, Lee WC. Early coagulopathy resulted from brain injury rather than hypoperfusion. J Trauma. 2011;70:765.CrossRefPubMed Lin HL, Kuo LC, Chen CW, Lee WC. Early coagulopathy resulted from brain injury rather than hypoperfusion. J Trauma. 2011;70:765.CrossRefPubMed
27.
go back to reference Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27:121–30.CrossRefPubMed Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27:121–30.CrossRefPubMed
28.
go back to reference Tovi D. Fibrinolytic activity of human brain. A histochemical study. Acta Neurol Scandinav. 1973;49:152–62.CrossRef Tovi D. Fibrinolytic activity of human brain. A histochemical study. Acta Neurol Scandinav. 1973;49:152–62.CrossRef
29.
go back to reference Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost. 2005;93:655–60.PubMedPubMedCentral Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost. 2005;93:655–60.PubMedPubMedCentral
30.
go back to reference Sahindranath M, Samson AL, Downes CE, Crack PJ, Lawrence AJ, Li QX, et al. Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Lab Invest. 2011;91:1079–91.CrossRef Sahindranath M, Samson AL, Downes CE, Crack PJ, Lawrence AJ, Li QX, et al. Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Lab Invest. 2011;91:1079–91.CrossRef
31.
go back to reference Lemarchant S, Docagne F, Emery E, Vivien D, Ali C, Rubio M. tPA in the injured central nervous system: different scenarios starring the same actor? Neuropharmacol. 2012;63:749–56.CrossRef Lemarchant S, Docagne F, Emery E, Vivien D, Ali C, Rubio M. tPA in the injured central nervous system: different scenarios starring the same actor? Neuropharmacol. 2012;63:749–56.CrossRef
33.
go back to reference Dewan Y, Komolafe EO, Mejia-Mantilla JH, Perel P, Roberts I, Shakur H, on behalf of CRASH-3 Collaborators. CRASH-3-tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012;13:87. Dewan Y, Komolafe EO, Mejia-Mantilla JH, Perel P, Roberts I, Shakur H, on behalf of CRASH-3 Collaborators. CRASH-3-tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012;13:87.
Metadata
Title
Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury
Authors
Takeshi Wada
Satoshi Gando
Kunihiko Maekaw
Kenichi Katabami
Hisako Sageshima
Mineji Hayakawa
Atsushi Sawamura
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1808-9

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue