Skip to main content
Top
Published in: BMC Medical Imaging 1/2009

Open Access 01-12-2009 | Research article

Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease

Authors: Bo Hedén, Eva Persson, Marcus Carlsson, Olle Pahlm, Håkan Arheden

Published in: BMC Medical Imaging | Issue 1/2009

Login to get access

Abstract

Background

It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT) in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem.

Methods

In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR) with delayed-enhancement technique to confirm or exclude myocardial infarction.

Results

There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR.

Conclusion

Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shaw LJ, Hendel R, Borges-Neto S, et al: Prognostic value of normal exercise and adenosine (99m)Tc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med. 2003, 44: 134-139.PubMed Shaw LJ, Hendel R, Borges-Neto S, et al: Prognostic value of normal exercise and adenosine (99m)Tc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med. 2003, 44: 134-139.PubMed
2.
go back to reference Underwood SR, Anagnostopoulos C, Cerqueira M, et al: Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004, 31: 261-291. 10.1007/s00259-003-1344-5.CrossRefPubMed Underwood SR, Anagnostopoulos C, Cerqueira M, et al: Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004, 31: 261-291. 10.1007/s00259-003-1344-5.CrossRefPubMed
3.
go back to reference DePuey EG, Rozanski A: Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med. 1995, 36: 952-955.PubMed DePuey EG, Rozanski A: Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med. 1995, 36: 952-955.PubMed
4.
go back to reference DePuey EG: How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med. 1994, 35: 699-702.PubMed DePuey EG: How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med. 1994, 35: 699-702.PubMed
5.
go back to reference Garcia EV: SPECT attenuation correction: an essential tool to realize nuclear cardiology's manifest destiny. J Nucl Cardiol. 2007, 14: 16-24. 10.1016/j.nuclcard.2006.12.144.CrossRefPubMed Garcia EV: SPECT attenuation correction: an essential tool to realize nuclear cardiology's manifest destiny. J Nucl Cardiol. 2007, 14: 16-24. 10.1016/j.nuclcard.2006.12.144.CrossRefPubMed
6.
go back to reference Germano G, Slomka PJ, Berman DS: Attenuation correction in cardiac SPECT: the boy who cried wolf?. J Nucl Cardiol. 2007, 14: 25-35. 10.1016/j.nuclcard.2006.12.317.CrossRefPubMed Germano G, Slomka PJ, Berman DS: Attenuation correction in cardiac SPECT: the boy who cried wolf?. J Nucl Cardiol. 2007, 14: 25-35. 10.1016/j.nuclcard.2006.12.317.CrossRefPubMed
7.
go back to reference Segall GM, Davis MJ, Goris ML: Improved specificity of prone versus supine thallium SPECT imaging. Clin Nucl Med. 1988, 13: 915-916. 10.1097/00003072-198812000-00016.CrossRefPubMed Segall GM, Davis MJ, Goris ML: Improved specificity of prone versus supine thallium SPECT imaging. Clin Nucl Med. 1988, 13: 915-916. 10.1097/00003072-198812000-00016.CrossRefPubMed
8.
go back to reference Perault C, Loboguerrero A, Liehn JC, et al: Quantitative comparison of prone and supine myocardial SPECT MIBI images. Clin Nucl Med. 1995, 20: 678-684. 10.1097/00003072-199508000-00003.CrossRefPubMed Perault C, Loboguerrero A, Liehn JC, et al: Quantitative comparison of prone and supine myocardial SPECT MIBI images. Clin Nucl Med. 1995, 20: 678-684. 10.1097/00003072-199508000-00003.CrossRefPubMed
9.
go back to reference Lowenstein BA, Pezzuti R, Cohen MC: The use of prone imaging on acute resting gated myocardial perfusion imaging with Tc-99m sestamibi. J Nucl Cardiol. 2003, 10: 211-212. 10.1067/mnc.2003.400.CrossRefPubMed Lowenstein BA, Pezzuti R, Cohen MC: The use of prone imaging on acute resting gated myocardial perfusion imaging with Tc-99m sestamibi. J Nucl Cardiol. 2003, 10: 211-212. 10.1067/mnc.2003.400.CrossRefPubMed
10.
go back to reference Kiat H, Van Train KF, Friedman JD, et al: Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med. 1992, 33: 1509-1515.PubMed Kiat H, Van Train KF, Friedman JD, et al: Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med. 1992, 33: 1509-1515.PubMed
11.
go back to reference Segall GM, Davis MJ: Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med. 1989, 30: 548-555.PubMed Segall GM, Davis MJ: Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med. 1989, 30: 548-555.PubMed
12.
go back to reference Lisbona R, Dinh L, Derbekyan V, Novales-Diaz JA: Supine and prone SPECT Tc-99m MIBI myocardial perfusion imaging for dipyridamole studies. Clin Nucl Med. 1995, 20: 674-677. 10.1097/00003072-199508000-00002.CrossRefPubMed Lisbona R, Dinh L, Derbekyan V, Novales-Diaz JA: Supine and prone SPECT Tc-99m MIBI myocardial perfusion imaging for dipyridamole studies. Clin Nucl Med. 1995, 20: 674-677. 10.1097/00003072-199508000-00002.CrossRefPubMed
13.
go back to reference Hayes SW, De Lorenzo A, Hachamovitch R, et al: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT. J Nucl Med. 2003, 44: 1633-1640.PubMed Hayes SW, De Lorenzo A, Hachamovitch R, et al: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT. J Nucl Med. 2003, 44: 1633-1640.PubMed
14.
go back to reference Kim RJ, Fieno DS, Parrish TB, et al: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999, 100: 1992-2002.CrossRefPubMed Kim RJ, Fieno DS, Parrish TB, et al: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999, 100: 1992-2002.CrossRefPubMed
15.
go back to reference Carlsson M, Arheden H, Higgins CB, Saeed M: Magnetic resonance imaging as a potential gold standard for infarct quantification. J Electrocardiol. 2008, 41 (6): 614-620. 10.1016/j.jelectrocard.2008.06.010.CrossRefPubMed Carlsson M, Arheden H, Higgins CB, Saeed M: Magnetic resonance imaging as a potential gold standard for infarct quantification. J Electrocardiol. 2008, 41 (6): 614-620. 10.1016/j.jelectrocard.2008.06.010.CrossRefPubMed
16.
go back to reference Persson E, Carlsson M, Palmer J, Pahlm O, Arheden H: Evaluation of left ventricular volumes and ejection fraction by automated gated myocardial SPECT versus cardiovascular magnetic resonance. Clin Physiol Funct Imaging. 2005, 25: 135-141. 10.1111/j.1475-097X.2005.00599.x.CrossRefPubMed Persson E, Carlsson M, Palmer J, Pahlm O, Arheden H: Evaluation of left ventricular volumes and ejection fraction by automated gated myocardial SPECT versus cardiovascular magnetic resonance. Clin Physiol Funct Imaging. 2005, 25: 135-141. 10.1111/j.1475-097X.2005.00599.x.CrossRefPubMed
17.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, et al: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105: 539-542. 10.1161/hc0402.102975.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, et al: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105: 539-542. 10.1161/hc0402.102975.CrossRefPubMed
18.
go back to reference Heiberg E, Engblom H, Engvall J, Hedstrom E, Ugander M, Arheden H: Semi-automatic quantification of myocardial infarction from delayed contrast enhanced magnetic resonance imaging. Scand Cardiovasc J. 2005, 39: 267-275. 10.1080/14017430500340543.CrossRefPubMed Heiberg E, Engblom H, Engvall J, Hedstrom E, Ugander M, Arheden H: Semi-automatic quantification of myocardial infarction from delayed contrast enhanced magnetic resonance imaging. Scand Cardiovasc J. 2005, 39: 267-275. 10.1080/14017430500340543.CrossRefPubMed
19.
go back to reference Nishina H, Slomka PJ, Abidov A, et al: Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med. 2006, 47: 51-58.PubMed Nishina H, Slomka PJ, Abidov A, et al: Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med. 2006, 47: 51-58.PubMed
20.
go back to reference Jeanguillaume C, Bochet J, Chehade F, Hindie E, Ajayan PM, Galle P: Cardiac axis change between prone and supine positioning may contribute to differences in 99Tc(m)-MIBI myocardial SPET imaging. Nucl Med Commun. 1997, 18: 1161-1170. 10.1097/00006231-199712000-00008.CrossRefPubMed Jeanguillaume C, Bochet J, Chehade F, Hindie E, Ajayan PM, Galle P: Cardiac axis change between prone and supine positioning may contribute to differences in 99Tc(m)-MIBI myocardial SPET imaging. Nucl Med Commun. 1997, 18: 1161-1170. 10.1097/00006231-199712000-00008.CrossRefPubMed
21.
go back to reference Goodgold HM, Rehder JG, Samuels LD, Chaitman BR: Improved interpretation of exercise Tl-201 myocardial perfusion scintigraphy in women: characterization of breast attenuation artifacts. Radiology. 1987, 165: 361-366.CrossRefPubMed Goodgold HM, Rehder JG, Samuels LD, Chaitman BR: Improved interpretation of exercise Tl-201 myocardial perfusion scintigraphy in women: characterization of breast attenuation artifacts. Radiology. 1987, 165: 361-366.CrossRefPubMed
22.
go back to reference McCrohon JA, Lyne JC, Rahman SL, Lorenz CH, Underwood SR, Pennell DJ: Adjunctive role of cardiovascular magnetic resonance in the assessment of patients with inferior attenuation on myocardial perfusion SPECT. J Cardiovasc Magn Reson. 2005, 7: 377-382. 10.1081/JCMR-200053627.CrossRefPubMed McCrohon JA, Lyne JC, Rahman SL, Lorenz CH, Underwood SR, Pennell DJ: Adjunctive role of cardiovascular magnetic resonance in the assessment of patients with inferior attenuation on myocardial perfusion SPECT. J Cardiovasc Magn Reson. 2005, 7: 377-382. 10.1081/JCMR-200053627.CrossRefPubMed
23.
go back to reference Wagner A, Mahrholdt H, Holly TA, et al: Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003, 361: 374-379. 10.1016/S0140-6736(03)12389-6.CrossRefPubMed Wagner A, Mahrholdt H, Holly TA, et al: Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003, 361: 374-379. 10.1016/S0140-6736(03)12389-6.CrossRefPubMed
24.
go back to reference Ebeling Barbier C, Bjerner T, Hansen T, et al: Clinically unrecognized myocardial infarction detected at MR imaging may not be associated with atherosclerosis. Radiology. 2007, 245: 103-110. 10.1148/radiol.2451061664.CrossRefPubMed Ebeling Barbier C, Bjerner T, Hansen T, et al: Clinically unrecognized myocardial infarction detected at MR imaging may not be associated with atherosclerosis. Radiology. 2007, 245: 103-110. 10.1148/radiol.2451061664.CrossRefPubMed
25.
go back to reference Barbier CE, Bjerner T, Johansson L, Lind L, Ahlstrom H: Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J Am Coll Cardiol. 2006, 48: 765-771. 10.1016/j.jacc.2006.05.041.CrossRefPubMed Barbier CE, Bjerner T, Johansson L, Lind L, Ahlstrom H: Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J Am Coll Cardiol. 2006, 48: 765-771. 10.1016/j.jacc.2006.05.041.CrossRefPubMed
26.
go back to reference Almquist H, Arheden H, Arvidsson AH, Pahlm O, Palmer J: Clinical implication of down-scatter in attenuation-corrected myocardial SPECT. J Nucl Cardiol. 1999, 6: 406-411. 10.1016/S1071-3581(99)90006-5.CrossRefPubMed Almquist H, Arheden H, Arvidsson AH, Pahlm O, Palmer J: Clinical implication of down-scatter in attenuation-corrected myocardial SPECT. J Nucl Cardiol. 1999, 6: 406-411. 10.1016/S1071-3581(99)90006-5.CrossRefPubMed
27.
go back to reference Koepfli P, Hany TF, Wyss CA, et al: CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med. 2004, 45: 537-542.PubMed Koepfli P, Hany TF, Wyss CA, et al: CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med. 2004, 45: 537-542.PubMed
28.
go back to reference Ramakrishna G, Miller TD, Breen JF, Araoz PA, Hodge DO, Gibbons RJ: Relationship and prognostic value of coronary artery calcification by electron beam computed tomography to stress-induced ischemia by single photon emission computed tomography. Am Heart J. 2007, 153: 807-814. 10.1016/j.ahj.2007.02.020.CrossRefPubMed Ramakrishna G, Miller TD, Breen JF, Araoz PA, Hodge DO, Gibbons RJ: Relationship and prognostic value of coronary artery calcification by electron beam computed tomography to stress-induced ischemia by single photon emission computed tomography. Am Heart J. 2007, 153: 807-814. 10.1016/j.ahj.2007.02.020.CrossRefPubMed
29.
go back to reference Goetze S, Brown TL, Lavely WC, Zhang Z, Bengel FM: Attenuation correction in myocardial perfusion SPECT/CT: effects of misregistration and value of reregistration. J Nucl Med. 2007, 48: 1090-1095. 10.2967/jnumed.107.040535.CrossRefPubMed Goetze S, Brown TL, Lavely WC, Zhang Z, Bengel FM: Attenuation correction in myocardial perfusion SPECT/CT: effects of misregistration and value of reregistration. J Nucl Med. 2007, 48: 1090-1095. 10.2967/jnumed.107.040535.CrossRefPubMed
30.
go back to reference Kuikka JT: Myocardial perfusion imaging with a novel SPECT/CT system: all that glitters is not gold. Eur J Nucl Med Mol Imaging. 2007, 34: 611-612. 10.1007/s00259-006-0339-4.CrossRefPubMed Kuikka JT: Myocardial perfusion imaging with a novel SPECT/CT system: all that glitters is not gold. Eur J Nucl Med Mol Imaging. 2007, 34: 611-612. 10.1007/s00259-006-0339-4.CrossRefPubMed
Metadata
Title
Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease
Authors
Bo Hedén
Eva Persson
Marcus Carlsson
Olle Pahlm
Håkan Arheden
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2009
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-9-16

Other articles of this Issue 1/2009

BMC Medical Imaging 1/2009 Go to the issue