Skip to main content
Top
Published in: BMC Cancer 1/2004

Open Access 01-12-2004 | Research article

Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

Authors: Maja Cemazar, Ian Wilson, Gabi U Dachs, Gillian M Tozer, Gregor Sersa

Published in: BMC Cancer | Issue 1/2004

Login to get access

Abstract

Background

Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal.

Methods

Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared.

Results

Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses.

Conclusions

Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model.
Appendix
Available only for authorised users
Literature
1.
go back to reference French gene therapy group reports on the adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID): Position statement from the European Society of Gene Therapy (ESGT). J Gene Med. 2003, 5: 82-84. 10.1002/jgm.364. French gene therapy group reports on the adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID): Position statement from the European Society of Gene Therapy (ESGT). J Gene Med. 2003, 5: 82-84. 10.1002/jgm.364.
2.
go back to reference Neumann E, Rosenheck K: Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol. 1972, 10: 279-290.CrossRefPubMed Neumann E, Rosenheck K: Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol. 1972, 10: 279-290.CrossRefPubMed
3.
go back to reference Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J: In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol. 1998, 16: 168-171. 10.1038/nbt0298-168.CrossRefPubMed Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J: In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol. 1998, 16: 168-171. 10.1038/nbt0298-168.CrossRefPubMed
4.
go back to reference Mir LM: Therapeutic perspectives of in vivo cell permeabilization. Bioelectrochemistry. 2001, 53: 1-10. 10.1016/S0302-4598(00)00112-4.CrossRefPubMed Mir LM: Therapeutic perspectives of in vivo cell permeabilization. Bioelectrochemistry. 2001, 53: 1-10. 10.1016/S0302-4598(00)00112-4.CrossRefPubMed
5.
go back to reference Cemazar M, Sersa G, Wilson J, Tozer GM, Hart SL, Grosel A, Dachs GU: Effective gene transfer to solid tumors using different non-viral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector. Cancer Gene Ther. 2002, 9: 399-406. 10.1038/sj.cgt.7700454.CrossRefPubMed Cemazar M, Sersa G, Wilson J, Tozer GM, Hart SL, Grosel A, Dachs GU: Effective gene transfer to solid tumors using different non-viral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector. Cancer Gene Ther. 2002, 9: 399-406. 10.1038/sj.cgt.7700454.CrossRefPubMed
6.
go back to reference Gothelf A, Mir LM, Gehl J: Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 2003, 29: 371-387. 10.1016/S0305-7372(03)00073-2.CrossRefPubMed Gothelf A, Mir LM, Gehl J: Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 2003, 29: 371-387. 10.1016/S0305-7372(03)00073-2.CrossRefPubMed
8.
go back to reference Nishi T, Yoshizato K, Yamashiro S, Takeshima H, Sato K, Hamada K, Kitamura I, Yoshimura T, Saya H, Kuratsu J, Ushio Y: High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res. 1996, 56: 1050-1055.PubMed Nishi T, Yoshizato K, Yamashiro S, Takeshima H, Sato K, Hamada K, Kitamura I, Yoshimura T, Saya H, Kuratsu J, Ushio Y: High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res. 1996, 56: 1050-1055.PubMed
9.
go back to reference Heller L, Pottinger C, Jaroszeski MJ, Gilbert R, Heller R: In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res. 2000, 10: 577-583. 10.1097/00008390-200012000-00010.CrossRefPubMed Heller L, Pottinger C, Jaroszeski MJ, Gilbert R, Heller R: In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res. 2000, 10: 577-583. 10.1097/00008390-200012000-00010.CrossRefPubMed
10.
go back to reference Yamashita YI, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T, Tanaka S, Shirabe K, Miyazaki JI, Sugimachi K: Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res. 2001, 61: 1005-1012.PubMed Yamashita YI, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T, Tanaka S, Shirabe K, Miyazaki JI, Sugimachi K: Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res. 2001, 61: 1005-1012.PubMed
11.
go back to reference Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y, Zhao Y, Dewhirst MW, Yuan F, Lee CY: Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res. 2001, 61: 3281-3284.PubMed Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y, Zhao Y, Dewhirst MW, Yuan F, Lee CY: Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res. 2001, 61: 3281-3284.PubMed
12.
go back to reference Cichon T, Jamrozy L, Glogowska J, Missol-Kolka E, Szala S: Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther. 2002, 9: 771-777. 10.1038/sj.cgt.7700497.CrossRefPubMed Cichon T, Jamrozy L, Glogowska J, Missol-Kolka E, Szala S: Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther. 2002, 9: 771-777. 10.1038/sj.cgt.7700497.CrossRefPubMed
13.
go back to reference Cemazar M, Grosel A, Glavac D, Kotnik V, Skoberne M, Kranjc S, Mir LM, Andre F, Opolon P, Sersa G: Effects of electrogenetherapy with p53 wt combined with cisplatin on survival of human tumor cell lines with different p53 status. DNA Cell Biol. 2003, 22: 765-775. 10.1089/104454903322624975.CrossRefPubMed Cemazar M, Grosel A, Glavac D, Kotnik V, Skoberne M, Kranjc S, Mir LM, Andre F, Opolon P, Sersa G: Effects of electrogenetherapy with p53 wt combined with cisplatin on survival of human tumor cell lines with different p53 status. DNA Cell Biol. 2003, 22: 765-775. 10.1089/104454903322624975.CrossRefPubMed
14.
go back to reference Gehl J: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003, 177: 437-447.CrossRefPubMed Gehl J: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003, 177: 437-447.CrossRefPubMed
15.
go back to reference Bettan M, Ivanov MA, Mir LM, Boissiere F, Dealere P, Scherman D: Efficient DNA electrotransfer into tumors. Bioelectrochemistry. 2000, 52: 83-90. 10.1016/S0302-4598(00)00087-8.CrossRefPubMed Bettan M, Ivanov MA, Mir LM, Boissiere F, Dealere P, Scherman D: Efficient DNA electrotransfer into tumors. Bioelectrochemistry. 2000, 52: 83-90. 10.1016/S0302-4598(00)00087-8.CrossRefPubMed
16.
go back to reference Huang Q, Shan S, Braun RD, Lanzen J, Anyrhambatla G, Kong G, Borelli M, Corry P, Dewhirst MW, Li CY: Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat Biotechnol. 1999, 17: 1033-1035. 10.1038/13736.CrossRefPubMed Huang Q, Shan S, Braun RD, Lanzen J, Anyrhambatla G, Kong G, Borelli M, Corry P, Dewhirst MW, Li CY: Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat Biotechnol. 1999, 17: 1033-1035. 10.1038/13736.CrossRefPubMed
17.
go back to reference Jain RK, Munn LL, Fukumura D: Dissecting tumour patophysiology using intravital microscopy. Nat Rev Cancer. 2002, 2: 266-276. 10.1038/nrc778.CrossRefPubMed Jain RK, Munn LL, Fukumura D: Dissecting tumour patophysiology using intravital microscopy. Nat Rev Cancer. 2002, 2: 266-276. 10.1038/nrc778.CrossRefPubMed
18.
go back to reference Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, Barber PR, Vojnovic B, Chaplin DJ: Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: Intravital microscopy and measurement of vascular permeability. Cancer Res. 2001, 61: 6413-6422.PubMed Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, Barber PR, Vojnovic B, Chaplin DJ: Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: Intravital microscopy and measurement of vascular permeability. Cancer Res. 2001, 61: 6413-6422.PubMed
19.
go back to reference Golzio M, Teissie J, Rols MP: Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA. 2002, 99: 1292-1297. 10.1073/pnas.022646499.CrossRefPubMedPubMedCentral Golzio M, Teissie J, Rols MP: Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA. 2002, 99: 1292-1297. 10.1073/pnas.022646499.CrossRefPubMedPubMedCentral
20.
go back to reference Miller AD: The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr Med Chem. 2003, 14: 1195-1211.CrossRef Miller AD: The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr Med Chem. 2003, 14: 1195-1211.CrossRef
21.
go back to reference Yoo GH, Hung MC, Lopez-Berenstein G, LaFollette S, Ensley JF, Carey M, Batson E, Reynolds TC, Murray JL: Phase I trial of intratumoral liposome EiA gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res. 2001, 7: 1237-1245.PubMed Yoo GH, Hung MC, Lopez-Berenstein G, LaFollette S, Ensley JF, Carey M, Batson E, Reynolds TC, Murray JL: Phase I trial of intratumoral liposome EiA gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res. 2001, 7: 1237-1245.PubMed
22.
go back to reference Sersa G, Cemazar M, Semrov D, Miklavcic D: Changing electrode orientation improves the efficacy of electrochemotherapy of solid tumors in mice. Bioelectrochem Bioenerg. 1996, 39: 61-66. 10.1016/0302-4598(95)01866-2.CrossRef Sersa G, Cemazar M, Semrov D, Miklavcic D: Changing electrode orientation improves the efficacy of electrochemotherapy of solid tumors in mice. Bioelectrochem Bioenerg. 1996, 39: 61-66. 10.1016/0302-4598(95)01866-2.CrossRef
23.
go back to reference Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM: In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta. 1999, 1428: 233-240.CrossRefPubMed Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM: In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta. 1999, 1428: 233-240.CrossRefPubMed
Metadata
Title
Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution
Authors
Maja Cemazar
Ian Wilson
Gabi U Dachs
Gillian M Tozer
Gregor Sersa
Publication date
01-12-2004
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2004
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-4-81

Other articles of this Issue 1/2004

BMC Cancer 1/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine