Skip to main content
Top
Published in: Molecular Autism 1/2018

Open Access 01-12-2018 | Research

Diffusional kurtosis imaging of the corpus callosum in autism

Authors: Yu Veronica Sui, Jeffrey Donaldson, Laura Miles, James S. Babb, Francisco Xavier Castellanos, Mariana Lazar

Published in: Molecular Autism | Issue 1/2018

Login to get access

Abstract

Background

The corpus callosum is implicated in the pathophysiology of autism spectrum disorder (ASD). However, specific structural deficits and underlying mechanisms are yet to be well defined.

Methods

We employed diffusional kurtosis imaging (DKI) metrics to characterize white matter properties within five discrete segments of the corpus callosum in 17 typically developing (TD) adults and 16 age-matched participants with ASD without co-occurring intellectual disability (ID). The DKI metrics included axonal water fraction (faxon) and intra-axonal diffusivity (Daxon), which reflect axonal density and caliber, and extra-axonal radial (RDextra) and axial (ADextra) diffusivities, which reflect myelination and microstructural organization of the extracellular space. The relationships between DKI metrics and processing speed, a cognitive feature known to be impaired in ASD, were also examined.

Results

ASD group had significantly decreased callosal faxon and Daxon (p = .01 and p = .045), particularly in the midbody, isthmus, and splenium. Regression analysis showed that variation in DKI metrics, primarily in the mid and posterior callosal regions explained up to 70.7% of the variance in processing speed scores for TD (p = .001) but not for ASD (p > .05).

Conclusion

Decreased DKI metrics suggested that ASD may be associated with axonal deficits such as reduced axonal caliber and density in the corpus callosum, especially in the mid and posterior callosal areas. These data suggest that impaired interhemispheric connectivity may contribute to decreased processing speed in ASD participants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992;598(1–2):143–53.CrossRef Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992;598(1–2):143–53.CrossRef
4.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Pub; 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Pub; 2013.
6.
go back to reference Aoki, Y., Yoncheva, Y. N., Chen, B., Nath, T., Sharp, D., Lazar, M., ... Di Martino, A. (2017). Association of white matter structure with autism spectrum disorder and attention-deficit/hyperactivity disorder.CrossRef Aoki, Y., Yoncheva, Y. N., Chen, B., Nath, T., Sharp, D., Lazar, M., ... Di Martino, A. (2017). Association of white matter structure with autism spectrum disorder and attention-deficit/hyperactivity disorder.CrossRef
7.
go back to reference Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004;55(3):323–6.CrossRef Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004;55(3):323–6.CrossRef
9.
go back to reference Benitez A, Jensen JH, Falangola MF, Nietert PJ, Helpern JA. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. Neurobiol Aging. 2018;70:265–75.CrossRef Benitez A, Jensen JH, Falangola MF, Nietert PJ, Helpern JA. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. Neurobiol Aging. 2018;70:265–75.CrossRef
10.
go back to reference Brown WS, Paul LK. Cognitive and psychosocial deficits in agenesis of the corpus callosum with normal intelligence. Cogn Neuropsychiatry. 2000;5(2):135–57.CrossRef Brown WS, Paul LK. Cognitive and psychosocial deficits in agenesis of the corpus callosum with normal intelligence. Cogn Neuropsychiatry. 2000;5(2):135–57.CrossRef
11.
go back to reference Cercignani M, Inglese M, Pagani E, Comi G, Filippi M. Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. Am J Neuroradiol. 2001;22(5):952–8.PubMed Cercignani M, Inglese M, Pagani E, Comi G, Filippi M. Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. Am J Neuroradiol. 2001;22(5):952–8.PubMed
14.
go back to reference de Lacoste MC, Kirkpatrick JB, Ross ED. Topography of the human corpus callosum. J Neuropathol Exp Neurol. 1985;44(6):578–91.CrossRef de Lacoste MC, Kirkpatrick JB, Ross ED. Topography of the human corpus callosum. J Neuropathol Exp Neurol. 1985;44(6):578–91.CrossRef
15.
go back to reference Falangola MF, Guilfoyle DN, Tabesh A, Hui ES, Nie X, Jensen JH, et al. Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone-induced corpus callosum demyelination. NMR Biomed. 2014;27(8):948–57.CrossRef Falangola MF, Guilfoyle DN, Tabesh A, Hui ES, Nie X, Jensen JH, et al. Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone-induced corpus callosum demyelination. NMR Biomed. 2014;27(8):948–57.CrossRef
18.
go back to reference Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord. 2003;33(4):365–82.CrossRef Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord. 2003;33(4):365–82.CrossRef
22.
go back to reference Hardan AY, Minshew NJ, Keshavan MS. Corpus callosum size in autism. Neurology. 2000;55(7):1033–6.CrossRef Hardan AY, Minshew NJ, Keshavan MS. Corpus callosum size in autism. Neurology. 2000;55(7):1033–6.CrossRef
23.
go back to reference He Q, Duan Y, Karsch K, Miles J. Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res Neuroimaging. 2010;183(2):126–32.CrossRef He Q, Duan Y, Karsch K, Miles J. Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res Neuroimaging. 2010;183(2):126–32.CrossRef
24.
go back to reference Heeger DJ, Behrmann M, Dinstein I. Vision as a beachhead. Biol Psychiatry. 2017;81(10):832–7.CrossRef Heeger DJ, Behrmann M, Dinstein I. Vision as a beachhead. Biol Psychiatry. 2017;81(10):832–7.CrossRef
29.
go back to reference Jelescu IO, Veraart J, Adisetiyo V, Milla SS, Novikov DS, Fieremans E. One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI? Neuroimage. 2015;107:242–56.CrossRef Jelescu IO, Veraart J, Adisetiyo V, Milla SS, Novikov DS, Fieremans E. One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI? Neuroimage. 2015;107:242–56.CrossRef
30.
go back to reference Jelescu IO, Zurek M, Winters KV, Veraart J, Rajaratnam A, Kim NS, et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy. Neuroimage. 2016;132:104–14.CrossRef Jelescu IO, Zurek M, Winters KV, Veraart J, Rajaratnam A, Kim NS, et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy. Neuroimage. 2016;132:104–14.CrossRef
31.
go back to reference Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41.CrossRef Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41.CrossRef
32.
go back to reference Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.CrossRef Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.CrossRef
37.
go back to reference Lazar M. Working memory: how important is white matter? Neuroscientist. 2017;23(2):197–210.CrossRef Lazar M. Working memory: how important is white matter? Neuroscientist. 2017;23(2):197–210.CrossRef
39.
go back to reference Lewis JD, Evans AC, Pruett JR, Botteron KN, McKinstry RC, Zwaigenbaum L, et al. The emergence of network inefficiencies in infants with autism spectrum disorder. Biol Psychiatry. 2017;82(3):176–85.CrossRef Lewis JD, Evans AC, Pruett JR, Botteron KN, McKinstry RC, Zwaigenbaum L, et al. The emergence of network inefficiencies in infants with autism spectrum disorder. Biol Psychiatry. 2017;82(3):176–85.CrossRef
40.
go back to reference Lord C, Cook EH, Leventhal BL, Amaral DG. Autism spectrum disorders. Neuron. 2000a;28(2):355–63.CrossRef Lord C, Cook EH, Leventhal BL, Amaral DG. Autism spectrum disorders. Neuron. 2000a;28(2):355–63.CrossRef
41.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000b;30(3):205–23.CrossRef Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000b;30(3):205–23.CrossRef
42.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.CrossRef Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.CrossRef
46.
go back to reference Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8(4):287.CrossRef Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8(4):287.CrossRef
48.
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19.CrossRef Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19.CrossRef
52.
go back to reference Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 2011;65(3):823–36.CrossRef Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 2011;65(3):823–36.CrossRef
58.
go back to reference Wechsler D. WAIS-III: Wechsler adult intelligence scale: psychological corporation; 1997. Wechsler D. WAIS-III: Wechsler adult intelligence scale: psychological corporation; 1997.
59.
go back to reference Wegiel J, Flory M, Kaczmarski W, Brown WT, Chadman K, Wisniewski T, et al. Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol. 2017;76(3):225–37.CrossRef Wegiel J, Flory M, Kaczmarski W, Brown WT, Chadman K, Wisniewski T, et al. Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol. 2017;76(3):225–37.CrossRef
60.
go back to reference Winterer G. Noisy networks and autism. Biol Psychiatry. 2017;82(3):152–4.CrossRef Winterer G. Noisy networks and autism. Biol Psychiatry. 2017;82(3):152–4.CrossRef
61.
go back to reference Witelson SF. The brain connection: the corpus callosum is larger in left-handers. Science. 1985;229(4714):665–8.CrossRef Witelson SF. The brain connection: the corpus callosum is larger in left-handers. Science. 1985;229(4714):665–8.CrossRef
Metadata
Title
Diffusional kurtosis imaging of the corpus callosum in autism
Authors
Yu Veronica Sui
Jeffrey Donaldson
Laura Miles
James S. Babb
Francisco Xavier Castellanos
Mariana Lazar
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2018
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-018-0245-1

Other articles of this Issue 1/2018

Molecular Autism 1/2018 Go to the issue