Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 4/2014

01-04-2014 | Original Article

Diffusion and perfusion correlates of the 18F-MISO PET lesion in acute stroke: pilot study

Authors: Josef A. Alawneh, Ramez R. Moustafa, S. Tulasi Marrapu, Ulf Jensen-Kondering, Rhiannon S. Morris, P. Simon Jones, Franklin I. Aigbirhio, Tim D. Fryer, T. Adrian Carpenter, Elizabeth A. Warburton, Jean-Claude Baron

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 4/2014

Login to get access

Abstract

Purpose

Mapping the ischaemic penumbra in acute stroke is of considerable clinical interest. For this purpose, mapping tissue hypoxia with 18F-misonidazole (FMISO) PET is attractive, and is straightforward compared to 15O PET. Given the current emphasis on penumbra imaging using diffusion/perfusion MR or CT perfusion, investigating the relationships between FMISO uptake and abnormalities with these modalities is important.

Methods

According to a prospective design, three patients (age 54–81 years; admission NIH stroke scale scores 16–22) with an anterior circulation stroke and extensive penumbra on CT- or MR-based perfusion imaging successfully completed FMISO PET, diffusion-weighted imaging and MR angiography 6–26 h after stroke onset, and follow-up FLAIR to map the final infarction. All had persistent proximal occlusion and a poor outcome despite thrombolysis. Significant FMISO trapping was defined voxel-wise relative to ten age-matched controls and mapped onto coregistered maps of the penumbra and irreversibly damaged ischaemic core.

Results

FMISO trapping was present in all patients (volume range 18–119 ml) and overlapped mainly with the penumbra but also with the core in each patient. There was a significant (p ≤ 0.001) correlation in the expected direction between FMISO uptake and perfusion, with a sharp FMISO uptake bend around the expected penumbra threshold.

Conclusion

FMISO uptake had the expected overlap with the penumbra and relationship with local perfusion. However, consistent with recent animal data, our study suggests FMISO trapping may not be specific to the penumbra. If confirmed in larger samples, this preliminary finding would have potential implications for the clinical application of FMISO PET in acute ischaemic stroke.
Literature
1.
go back to reference Muir KW, Buchan A, von Kummer R, Rother J, Baron JC. Imaging of acute stroke. Lancet Neurol. 2006;5:755–68.PubMedCrossRef Muir KW, Buchan A, von Kummer R, Rother J, Baron JC. Imaging of acute stroke. Lancet Neurol. 2006;5:755–68.PubMedCrossRef
2.
go back to reference Takasawa M, Moustafa RR, Baron JC. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke. 2008;39:1629–37.PubMedCrossRef Takasawa M, Moustafa RR, Baron JC. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke. 2008;39:1629–37.PubMedCrossRef
3.
go back to reference Markus R, Donnan G, Kazui S, Read S, Reutens D. Penumbral topography in human stroke: methodology and validation of the 'Penumbragram'. Neuroimage. 2004;21:1252–9.PubMedCrossRef Markus R, Donnan G, Kazui S, Read S, Reutens D. Penumbral topography in human stroke: methodology and validation of the 'Penumbragram'. Neuroimage. 2004;21:1252–9.PubMedCrossRef
4.
go back to reference Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke. 2003;34:2646–52.PubMedCrossRef Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke. 2003;34:2646–52.PubMedCrossRef
5.
go back to reference Markus R, Reutens DC, Kazui S, Read S, Wright P, Pearce DC, et al. Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain. 2004;127:1427–36.PubMedCrossRef Markus R, Reutens DC, Kazui S, Read S, Wright P, Pearce DC, et al. Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain. 2004;127:1427–36.PubMedCrossRef
6.
go back to reference Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, et al. The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol. 2000;48:228–35.PubMedCrossRef Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, et al. The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol. 2000;48:228–35.PubMedCrossRef
7.
go back to reference Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology. 1998;51:1617–21.PubMedCrossRef Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology. 1998;51:1617–21.PubMedCrossRef
10.
go back to reference Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage. 1999;9:63–80.PubMedCrossRef Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage. 1999;9:63–80.PubMedCrossRef
11.
go back to reference Guadagno JV, Jones PS, Aigbirhio FI, Wang D, Fryer TD, Day DJ, et al. Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain. 2008;131:2666–78.PubMedCrossRef Guadagno JV, Jones PS, Aigbirhio FI, Wang D, Fryer TD, Day DJ, et al. Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain. 2008;131:2666–78.PubMedCrossRef
12.
go back to reference Alawneh JA, Jones PS, Mikkelsen IK, Cho TH, Siemonsen S, Mouridsen K, et al. Infarction of 'non-core-non-penumbral' tissue after stroke: multivariate modelling of clinical impact. Brain. 2011;134:1765–76. doi:10.1093/brain/awr100.PubMedCrossRef Alawneh JA, Jones PS, Mikkelsen IK, Cho TH, Siemonsen S, Mouridsen K, et al. Infarction of 'non-core-non-penumbral' tissue after stroke: multivariate modelling of clinical impact. Brain. 2011;134:1765–76. doi:10.​1093/​brain/​awr100.PubMedCrossRef
13.
go back to reference Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85.PubMedCrossRef Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85.PubMedCrossRef
14.
go back to reference Piert M, Machulla HJ, Becker G, Aldinger P, Winter E, Bares R. Dependency of the [18F]fluoromisonidazole uptake on oxygen delivery and tissue oxygenation in the porcine liver. Nucl Med Biol. 2000;27:693–700.PubMedCrossRef Piert M, Machulla HJ, Becker G, Aldinger P, Winter E, Bares R. Dependency of the [18F]fluoromisonidazole uptake on oxygen delivery and tissue oxygenation in the porcine liver. Nucl Med Biol. 2000;27:693–700.PubMedCrossRef
15.
go back to reference Spratt NJ, Howells W, Donnan GA. The ischemic penumbra. In: Donnan GA, Baron JC, Sharp FS, Davies SM, editors. Imaging the penumbra: PET fluoromisonidazole. New York: Informa; 2007. Spratt NJ, Howells W, Donnan GA. The ischemic penumbra. In: Donnan GA, Baron JC, Sharp FS, Davies SM, editors. Imaging the penumbra: PET fluoromisonidazole. New York: Informa; 2007.
16.
go back to reference Furlan M, Marchal G, Viader F, Derlon JM, Baron JC. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996;40:216–26.PubMedCrossRef Furlan M, Marchal G, Viader F, Derlon JM, Baron JC. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996;40:216–26.PubMedCrossRef
17.
go back to reference Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12:193–203.PubMedCrossRef Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12:193–203.PubMedCrossRef
18.
go back to reference Guadagno JV, Warburton EA, Jones PS, Day DJ, Aigbirhio FI, Fryer TD, et al. How affected is oxygen metabolism in DWI lesions?: A combined acute stroke PET-MR study. Neurology. 2006;67:824–9.PubMedCrossRef Guadagno JV, Warburton EA, Jones PS, Day DJ, Aigbirhio FI, Fryer TD, et al. How affected is oxygen metabolism in DWI lesions?: A combined acute stroke PET-MR study. Neurology. 2006;67:824–9.PubMedCrossRef
19.
go back to reference Spratt NJ, Donnan GA, McLeod DD, Howells DW. 'Salvaged' stroke ischaemic penumbra shows significant injury: studies with the hypoxia tracer FMISO. J Cereb Blood Flow Metab. 2011;31:934–43.PubMedCentralPubMedCrossRef Spratt NJ, Donnan GA, McLeod DD, Howells DW. 'Salvaged' stroke ischaemic penumbra shows significant injury: studies with the hypoxia tracer FMISO. J Cereb Blood Flow Metab. 2011;31:934–43.PubMedCentralPubMedCrossRef
20.
go back to reference Di Rocco RJ, Kuczynski BL, Pirro JP, Bauer A, Linder KE, Ramalingam K, et al. Imaging ischemic tissue at risk of infarction during stroke. J Cereb Blood Flow Metab. 1993;13:755–62.PubMedCrossRef Di Rocco RJ, Kuczynski BL, Pirro JP, Bauer A, Linder KE, Ramalingam K, et al. Imaging ischemic tissue at risk of infarction during stroke. J Cereb Blood Flow Metab. 1993;13:755–62.PubMedCrossRef
21.
22.
24.
25.
go back to reference Casciari JJ, Graham MM, Rasey JS. A modeling approach for quantifying tumor hypoxia with [F-18]fluoromisonidazole PET time-activity data. Med Phys. 1995;22:1127–39.PubMedCrossRef Casciari JJ, Graham MM, Rasey JS. A modeling approach for quantifying tumor hypoxia with [F-18]fluoromisonidazole PET time-activity data. Med Phys. 1995;22:1127–39.PubMedCrossRef
27.
go back to reference Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol. 2007;62:170–6. doi:10.1002/ana.21174.PubMedCrossRef Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol. 2007;62:170–6. doi:10.​1002/​ana.​21174.PubMedCrossRef
28.
go back to reference Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke. 1981;12:454–9.PubMedCrossRef Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke. 1981;12:454–9.PubMedCrossRef
29.
go back to reference Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.PubMedCrossRef Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.PubMedCrossRef
30.
33.
go back to reference Takasawa M, Jones PS, Guadagno JV, Christensen S, Fryer TD, Harding S, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke. 2008;39:870–7.PubMedCrossRef Takasawa M, Jones PS, Guadagno JV, Christensen S, Fryer TD, Harding S, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke. 2008;39:870–7.PubMedCrossRef
34.
go back to reference Zaro-Weber O, Moeller-Hartmann W, Heiss WD, Sobesky J. MRI perfusion maps in acute stroke validated with 15O-water positron emission tomography. Stroke. 2010;41:443–9.PubMedCrossRef Zaro-Weber O, Moeller-Hartmann W, Heiss WD, Sobesky J. MRI perfusion maps in acute stroke validated with 15O-water positron emission tomography. Stroke. 2010;41:443–9.PubMedCrossRef
35.
go back to reference Hoffman JM, Rasey JS, Spence AM, Shaw DW, Krohn KA. Binding of the hypoxia tracer [3H]misonidazole in cerebral ischemia. Stroke. 1987;18:168–76.PubMedCrossRef Hoffman JM, Rasey JS, Spence AM, Shaw DW, Krohn KA. Binding of the hypoxia tracer [3H]misonidazole in cerebral ischemia. Stroke. 1987;18:168–76.PubMedCrossRef
Metadata
Title
Diffusion and perfusion correlates of the 18F-MISO PET lesion in acute stroke: pilot study
Authors
Josef A. Alawneh
Ramez R. Moustafa
S. Tulasi Marrapu
Ulf Jensen-Kondering
Rhiannon S. Morris
P. Simon Jones
Franklin I. Aigbirhio
Tim D. Fryer
T. Adrian Carpenter
Elizabeth A. Warburton
Jean-Claude Baron
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 4/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-013-2581-x

Other articles of this Issue 4/2014

European Journal of Nuclear Medicine and Molecular Imaging 4/2014 Go to the issue